ترغب بنشر مسار تعليمي؟ اضغط هنا

Inflation as an Information Bottleneck - A strategy for identifying universality classes and making robust predictions

61   0   0.0 ( 0 )
 نشر من قبل Mafalda Dias
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we propose a statistical approach to handling sources of theoretical uncertainty in string theory models of inflation. By viewing a model of inflation as a probabilistic graph, we show that there is an inevitable information bottleneck between the ultraviolet input of the theory and observables, as a simple consequence of the data processing theorem. This information bottleneck can result in strong hierarchies in the sensitivity of observables to the parameters of the underlying model and hence universal predictions with respect to at least some microphysical considerations. We also find other intriguing behaviour, such as sharp transitions in the predictions when certain hyperparameters cross a critical value. We develop a robust numerical approach to studying these behaviours by adapting methods often seen in the context of machine learning. We first test our approach by applying it to well known examples of universality, sharp transitions, and concentration phenomena in random matrix theory. We then apply the method to inflation with axion monodromy. We find universality with respect to a number of model parameters and that consistency with observational constraints implies that with very high probability certain perturbative corrections are non-negligible.

قيم البحث

اقرأ أيضاً

We show that the cosmological evolution of a scalar field in a potential can be obtained from a renormalisation group equation. The slow roll regime of inflation models is understood in this context as the slow evolution close to a fixed point, descr ibed by the methods of renormalisation group. This explains in part the universality observed in the predictions of a certain number of inflation models. We illustrate this behavior on a certain number of examples and discuss it in the context of the AdS/CFT correspondence.
77 - Marco Scalisi 2016
In this PhD thesis, we investigate generic features of inflation which are strictly related to fundamental aspects of UV-physics scenarios, such as string theory or supergravity. After a short introduction to standard and inflationary cosmology, we p resent our research findings. On the one hand, we show that focusing on universality properties of inflation can yield surprisingly stringent bounds on its dynamics. This approach allows us to identify the regime where the inflationary field range is uniquely determined by both the tensor-to-scalar ratio and the spectral index. Then, we derive a novel field-range bound, which is two orders of magnitude stronger than the original one derived by Lyth. On the other hand, we discuss the embedding of inflation in supergravity and prove that non-trivial hyperbolic Kahler geometries induce an attractor for the inflationary observables: the spectral tilt tends automatically to the center of the Planck dome whereas the amount of primordial gravitational waves is directly controlled by curvature of the internal manifold. We identify the origin of this attractor mechanism in the so-called $alpha$-scale supergravity model. Finally, we show how the inclusion of a nilpotent sector, allowing for a unified description of inflation and dark energy, implies an enhancement of the attractor nature of the theory. The main results of this thesis have been already published elsewhere. However, here we pay special attention to present them in a comprehensive way and provide the reader with the necessary background.
We introduce a notion of universality classes for the Gregory-Laflamme instability and determine, in the supergravity approximation, the stability of a variety of solutions, including the non-extremal D3-brane, M2-brane, and M5-brane. These three non -dilatonic branes cross over from instability to stability at a certain non-extremal mass. Numerical analysis suggests that the wavelength of the shortest unstable mode diverges as one approaches the cross-over point from above, with a simple critical exponent which is the same in all three cases.
We present a new mechanism for slow-roll inflation based on higher dimensional supersymmetric gauge theory compactified to four dimensions with twisted (supersymmetry breaking) boundary conditions. These boundary conditions lead to a potential for di rections in field space that would have been flat were supersymmetry preserved. For field values in these directions much larger than the supersymmetry-breaking scale, the flatness of the potential is nearly restored. Starting in this nearly flat region, inflation can occur as the theory relaxes towards the origin of field space. Near the origin, the potential becomes steep and the theory quickly descends to a confining gauge theory in which the inflaton does not exist as a particle. This confining gauge theory could be part of the Standard Model (QCD) or a natural dark matter sector; we comment on various scenarios for reheating. As a specific illustration of this mechanism, we discuss 4+1 dimensional maximally supersymmetric gauge theory on a circle with antiperiodic boundary conditions for fermions. When the theory is weakly coupled at the compactification scale, we calculate the inflaton potential directly in field theory by integrating out the heavy W-bosons and their superpartners. At strong coupling the model can be studied using a gravity dual, which realizes a new model of brane inflation on a non-supersymmetric throat geometry. Assuming there exists a UV completion that avoids the eta-problem, predictions from our model are consistent with present observations, and imply a small tensor-to-scalar ratio.
We discuss models involving two scalar fields coupled to classical gravity that satisfy the general criteria: (i) the theory has no mass input parameters, (ii) classical scale symmetry is broken only through $-frac{1}{12}varsigma phi^2 R$ couplings w here $varsigma$ departs from the special conformal value of $1$; (iii) the Planck mass is dynamically generated by the vacuum expectations values (VEVs) of the scalars (iv) there is a stage of viable inflation associated with slow roll in the two--scalar potential; (v) the final vacuum has a small to vanishing cosmological constant and an hierarchically small ratio of the VEVs and the ratio of the scalar masses to the Planck scale. This assumes the paradigm of classical scale symmetry as a custodial symmetry of large hierarchies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا