Do you want to publish a course? Click here

Study of the change of dynamic properties of reinforced concrete beams containing slots

دراسة تغير الخواص الديناميكية للجوائز البيتونية المسلحة الحاوية على فتحات

473   0   0   0.0 ( 0 )
 Publication date 2019
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The research includes an analytical study using the finite element method for the reinforced concrete beams containing holes in the body. These tested trophies have a rectangular cross-section and without additional armament in the area of the hole, and two patterns (patterned and simple support) were studied. As for the holes, they are rectangular in shape with variable dimensions, where prizes with one hole and prizes with two holes were chosen.

References used
سمارة , د,م , محمد أحمد 2006 - أساسيات ديناميك المنشآت والهندسة الزلزالية الطبعة الاولى , منشورات جامعة دمشق
rate research

Read More

This research includes an experimental study and a nonlinear analysis using the finite element method of reinforced concrete beams with large opening in body that exist in shear zone . The tested beams are simply supported with rectangular section and without additional reinforcement in opening region. The opening is square in shape with variable dimensions and constant distance from the support . Studying the effect of changing length of the opening on the behavior of the reinforced concrete beams was already completed. The modes of cracks , (load-deflection ) relationship, ultimate load and the mode of failure for all beams were determinate . The study showed that existence an opening in shear region of beams reduce the strength of beams and affect on the mode of shear failure , and any addition in the depth of the opening lead to early cracks , more deflections and less ultimate failure load .
Structural Frame system is considers as an earthquake resisting structural systems. On the other hand, many techniques were used to improve the resistance against lateral loads. where Steel Plate Shear Wall fixed within frame span is one of those techniques. This research aims to develop the Strip model of Partial Steel Plate Shear Walls with Reinforced-Concrete Frame with opening parallel to beams.
The large increase in the volume of demolition concrete waste and its impact on the environment has led to reconsider of using concrete demolition rubble as a partial or a whole alternative of natural aggregates to produce new concrete which has th e required properties to use in engineering constructions[1]. With the possibility of improving the mechanical properties of this concrete by processing this aggregates before using it or support this concrete with fiber to improve its structural behavior. This research deals with the study of the replacement the natural aggregates used in concrete with recycled concrete aggregates resulting from the demolition rubble , according to different replacement ratiosranging between 0 % -25 % -50 % -75 % -100% and the impact on the concrete behavior with a natural aggregates and determine the optimal replacementpercentage. The results showed a relative decrease in the concrete resistance on the simple pressure , limited decrease in the volumetric mass also, and a slight adjustment to the behavior of concrete under the loading effect by increasing the replacement proportion of the natural aggregateswith recycled concrete aggregates..
The mixed use of steel bars and carbon rods in concrete beams can offer beams with different behaviour from that of steel reinforcement only. This paper studies the case of reinforcing concrete beams with two layers of bars, and the main para­meters investigated are the proportion and the distribution of carbon rods in the cross-section. Four groups containing 12 beams are tested, and each is reinforced with 4 bars located in two layers. The first group includes three control beams reinforced with steel bars, while the second includes three beams reinforced with carbon bars. Each of the third and fourth groups includes three beams reinforced with two steel bars and two carbon bars, whereas in the third group, steel bars are located above carbon ones, but in the fourth group, steel bars are located under carbon ones. Concrete beams reinforced with carbon rods in the second group exhibit a higher load carrying capacity and deflections, compared with other beams. However, the beams in the third and fourth groups have approximately the same load carrying capacity and the same behaviour up to the load level equal to 75% of their load carrying capacity. But after that, the beams in the fourth group become more deformed, compared with those of the third group.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا