Do you want to publish a course? Click here

Design a CNN network for vehicle classification

تصميم شبكة التفافية لتصنيف العربات

1335   5   0   0.0 ( 0 )
 Publication date 2020
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The project aims primarily to employ the benefits of artificial intelligence, specifically the characteristics of programming a neuronal network where neuronal networks, in turn, are networks that are interested in training and learning from error, and employing this error to achieve optimal results.Convolution NeuralNetworks(CNN)in particular are one of the most important neuronal networks that address classification problems and issues. Thus, this project is to design a convolution neuronal network that classifies vehicles into several types where we will design the network and train them on the database as the database includes pictures of several types of vehicles The network will classify each Image to its type, after adjusting the images, making the appropriate changes, turning them gray, and discovering the edges and lines.After the images are ready, the training process will begin, and after the training process is finished, we will produce classification results, and then we will test with a new set of images.One of the most important applications of this project is to abide by the paving places of cars, trucks, and vehicles in general, as if a picture was entered as a car for the car sample, which is a truck, for example, this will give an error where the network will discover this by examining and classifying it. As a truck, we discover that there is a violation of the paving laws


Artificial intelligence review:
Research summary
يهدف هذا المشروع إلى تصميم شبكة عصبية التفافية (CNN) لتصنيف العربات إلى عدة أنواع. يتم تدريب الشبكة على قاعدة بيانات تحتوي على صور لعدة أنواع من العربات، حيث يتم تعديل الصور وتحويلها إلى رمادية واكتشاف الحواف والخطوط قبل بدء عملية التدريب. بعد انتهاء التدريب، يتم اختبار الشبكة باستخدام مجموعة صور جديدة. من أهم تطبيقات هذا المشروع هو الالتزام بأماكن رصف السيارات والشاحنات والعربات بشكل عام، حيث يمكن للشبكة اكتشاف الخروقات في قوانين الرصف من خلال تصنيف الصور بشكل صحيح.
Critical review
دراسة نقدية: على الرغم من أن المشروع يهدف إلى تحقيق نتائج دقيقة في تصنيف العربات باستخدام الشبكات العصبية الالتفافية، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، يمكن تحسين دقة النموذج من خلال استخدام تقنيات تعزيز البيانات وزيادة حجم قاعدة البيانات. ثانياً، يمكن تحسين أداء النموذج من خلال استخدام نماذج أكثر تعقيداً مثل ResNet أو Inception. ثالثاً، يمكن تحسين عملية التقييم من خلال استخدام مقاييس أداء متعددة مثل الدقة والاستدعاء والنقطة F. وأخيراً، يمكن تحسين الوثوقية من خلال اختبار النموذج على بيانات من مصادر متعددة لضمان تعميم النتائج.
Questions related to the research
  1. ما هو الهدف الرئيسي من المشروع؟

    الهدف الرئيسي من المشروع هو تصميم شبكة عصبية التفافية لتصنيف العربات إلى عدة أنواع.

  2. ما هي الخطوات الأساسية التي تم اتباعها في تصميم الشبكة؟

    الخطوات الأساسية تشمل تجهيز البيئة، تجهيز قاعدة البيانات، تصميم الشبكة، تدريب النموذج، واختبار النموذج.

  3. ما هي التطبيقات المحتملة لهذا المشروع؟

    من التطبيقات المحتملة الالتزام بأماكن رصف السيارات والشاحنات والعربات بشكل عام واكتشاف الخروقات في قوانين الرصف.

  4. ما هي التحديات التي قد تواجه تصميم شبكة عصبية التفافية؟

    من التحديات إيجاد قاعدة بيانات مناسبة، تعديل الصور بشكل صحيح، وتجنب مشاكل overfitting وunderfitting.


References used
Deep convolution neural networks for vehicle classification
rate research

Read More

Multi-label document classification (MLDC) problems can be challenging, especially for long documents with a large label set and a long-tail distribution over labels. In this paper, we present an effective convolutional attention network for the MLDC problem with a focus on medical code prediction from clinical documents. Our innovations are three-fold: (1) we utilize a deep convolution-based encoder with the squeeze-and-excitation networks and residual networks to aggregate the information across the document and learn meaningful document representations that cover different ranges of texts; (2) we explore multi-layer and sum-pooling attention to extract the most informative features from these multi-scale representations; (3) we combine binary cross entropy loss and focal loss to improve performance for rare labels. We focus our evaluation study on MIMIC-III, a widely used dataset in the medical domain. Our models outperform prior work on medical coding and achieve new state-of-the-art results on multiple metrics. We also demonstrate the language independent nature of our approach by applying it to two non-English datasets. Our model outperforms prior best model and a multilingual Transformer model by a substantial margin.
The nonlinear model of Unmanned Aerial Vehicle( UAV) has been recognized. Airosim Matlab toolbox has been used to guarantee a simulation model for the Aerosonde.In the first stage, a linearization technique is used to calculate the mathematical m odel of the UAV at a specific operation point, then PID controller is used to stabilize this linear model. At the final stage, an augmented feedback neural network adaptive controller is applied to stabilize the overall nonlinear system.
Recent work on aspect-level sentiment classification has employed Graph Convolutional Networks (GCN) over dependency trees to learn interactions between aspect terms and opinion words. In some cases, the corresponding opinion words for an aspect term cannot be reached within two hops on dependency trees, which requires more GCN layers to model. However, GCNs often achieve the best performance with two layers, and deeper GCNs do not bring any additional gain. Therefore, we design a novel selective attention based GCN model. On one hand, the proposed model enables the direct interaction between aspect terms and context words via the self-attention operation without the distance limitation on dependency trees. On the other hand, a top-k selection procedure is designed to locate opinion words by selecting k context words with the highest attention scores. We conduct experiments on several commonly used benchmark datasets and the results show that our proposed SA-GCN outperforms strong baseline models.
Distributed Denial of Service attack (DDOS) on Vehicular Ad Hoc Networks (VANETs) is considered to be one of the most serious types of attacks that can be targeted to those networks. The danger of this attack is in the difficulty of detection becau se of the cooperation of several attacking nodes in the network, and its impact on the availability requirement that is one of the most important security requirements in a network offering real-time applications .In our research, we study the effect of this attack on VANET network in the city, taking into consideration two cases. In the first case the target of the attack is the nodes, while in the second one, the target is the road side units (RSU). Simulation results have shown that this attack has a significant impact on both cases, by comparing the basic parameters of the network, such as throughput in/out and the number of dropped packets, before and after the attack.
The purpose of this article is to shed light on the mechanism and the procedures of a program that classifies an input face into any of the six basic facial expressions, which are Anger, Disgust, Fear, Happiness, Sadness and Surprise, in addition to normal face. This program works by apply PCA- principal component analysis algorithm, which is applied of one side of the face, and depends, on contrast to the traditional studies which rely on the whole face, on three components: Eyebrows, Eyes and Mouth. Those out-value are used to determine the facial feature array as an input to the neural network, and the neural network is trained by using the back-propagation algorithm. Note that the faces used in this study belong to people from different ages and races.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا