كان لآلية النسخ نجاحا كبيرا في تلخيص الجماعي، مما يسهل النماذج لنسخ الكلمات مباشرة من نص الإدخال إلى ملخص الإخراج. يعمل Works الموجود في الغالب اهتماما في تشفير التشفير، والتي تنطبق النسخ في كل مرة خطوة في الوقت المستقل من السابقين. ومع ذلك، فقد يؤدي ذلك في بعض الأحيان إلى نسخ غير مكتمل. في هذه الورقة، نقترح خطة نسخ رواية تسمى شبكة النسخ المصنعة للتصوير (COOCONET) تعزز آلية النسخ القياسية عن طريق تتبع تاريخ النسخ. وبالتالي يستفيد من توزيعات النسخ المسبقة، وفي كل خطوة في كل مرة، يشجع النموذج بشكل صريح على نسخ كلمة الإدخال ذات الصلة بالوحدة المنسوخة مسبقا. بالإضافة إلى ذلك، نقوم بتعزيز جوز الهند من خلال التدريب المسبق مع شركة سورية مناسبة محاكاة سلوكيات النسخ. تظهر النتائج التجريبية أن CocoNet يمكن أن نسخ أكثر دقة وتحقق أدائا جديدا جديدا في معايير تلخيص، بما في ذلك CNN / Dailymail لتلخيص الأخبار وسامسوم لتلخيص الحوار. سيتم توفير التعليمات البرمجية ونقطة التفتيش علانية.
The copying mechanism has had considerable success in abstractive summarization, facilitating models to directly copy words from the input text to the output summary. Existing works mostly employ encoder-decoder attention, which applies copying at each time step independently of the former ones. However, this may sometimes lead to incomplete copying. In this paper, we propose a novel copying scheme named Correlational Copying Network (CoCoNet) that enhances the standard copying mechanism by keeping track of the copying history. It thereby takes advantage of prior copying distributions and, at each time step, explicitly encourages the model to copy the input word that is relevant to the previously copied one. In addition, we strengthen CoCoNet through pre-training with suitable corpora that simulate the copying behaviors. Experimental results show that CoCoNet can copy more accurately and achieves new state-of-the-art performances on summarization benchmarks, including CNN/DailyMail for news summarization and SAMSum for dialogue summarization. The code and checkpoint will be publicly available.
References used
https://aclanthology.org/
Replica technique remain most commonly used technique for
measuring the marginal fit in the medical literature, the silicone
rubber addition is considered most accurate and least changing
dimensions.
Aim of study to compare the accuracy and simpl
With the growing popularity of smart speakers, such as Amazon Alexa, speech is becoming one of the most important modes of human-computer interaction. Automatic speech recognition (ASR) is arguably the most critical component of such systems, as erro
Neural-based summarization models suffer from the length limitation of text encoder. Long documents have to been truncated before they are sent to the model, which results in huge loss of summary-relevant contents. To address this issue, we propose t
Abstractive summarization models heavily rely on copy mechanisms, such as the pointer network or attention, to achieve good performance, measured by textual overlap with reference summaries. As a result, the generated summaries stay close to the form
A crucial difference between single- and multi-document summarization is how salient content manifests itself in the document(s). While such content may appear at the beginning of a single document, essential information is frequently reiterated in a