Do you want to publish a course? Click here

WRIME: A New Dataset for Emotional Intensity Estimation with Subjective and Objective Annotations

التمهيد: مجموعة بيانات جديدة لتقدير الشدة العاطفية مع التعليقات الإعلانية ذاتية والهدف

205   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We annotate 17,000 SNS posts with both the writer's subjective emotional intensity and the reader's objective one to construct a Japanese emotion analysis dataset. In this study, we explore the difference between the emotional intensity of the writer and that of the readers with this dataset. We found that the reader cannot fully detect the emotions of the writer, especially anger and trust. In addition, experimental results in estimating the emotional intensity show that it is more difficult to estimate the writer's subjective labels than the readers'. The large gap between the subjective and objective emotions imply the complexity of the mapping from a post to the subjective emotion intensities, which also leads to a lower performance with machine learning models.



References used
https://aclanthology.org/
rate research

Read More

The paper introduces a new resource, CoDeRooMor, for studying the morphology of modern Swedish word formation. The approximately 16.000 lexical items in the resource have been manually segmented into word-formation morphemes, and labeled for their ca tegories, such as prefixes, suffixes, roots, etc. Word-formation mechanisms, such as derivation and compounding have been associated with each item on the list. The article describes the selection of items for manual annotation and the principles of annotation, reports on the reliability of the manual annotation, and presents tools, resources and some first statistics. Given the''gold'' nature of the resource, it is possible to use it for empirical studies as well as to develop linguistically-aware algorithms for morpheme segmentation and labeling (cf statistical subword approach). The resource will be made freely available.
Automatic personalized corrective feedback can help language learners from different backgrounds better acquire a new language. This paper introduces a learner English dataset in which learner errors are accompanied by information about possible erro r sources. This dataset contains manually annotated error causes for learner writing errors. These causes tie learner mistakes to structures from their first languages, when the rules in English and in the first language diverge. This new dataset will enable second language acquisition researchers to computationally analyze a large quantity of learner errors that are related to language transfer from the learners' first language. The dataset can also be applied in personalizing grammatical error correction systems according to the learners' first language and in providing feedback that is informed by the cause of an error.
The task of document-level text simplification is very similar to summarization with the additional difficulty of reducing complexity. We introduce a newly collected data set of German texts, collected from the Swiss news magazine 20 Minuten (20 Minu tes') that consists of full articles paired with simplified summaries. Furthermore, we present experiments on automatic text simplification with the pretrained multilingual mBART and a modified version thereof that is more memory-friendly, using both our new data set and existing simplification corpora. Our modifications of mBART let us train at a lower memory cost without much loss in performance, in fact, the smaller mBART even improves over the standard model in a setting with multiple simplification levels.
Many applications require generation of summaries tailored to the user's information needs, i.e., their intent. Methods that express intent via explicit user queries fall short when query interpretation is subjective. Several datasets exist for summa rization with objective intents where, for each document and intent (e.g., weather''), a single summary suffices for all users. No datasets exist, however, for subjective intents (e.g., interesting places'') where different users will provide different summaries. We present SUBSUME, the first dataset for evaluation of SUBjective SUMmary Extraction systems. SUBSUME contains 2,200 (document, intent, summary) triplets over 48 Wikipedia pages, with ten intents of varying subjectivity, provided by 103 individuals over Mechanical Turk. We demonstrate statistically that the intents in SUBSUME vary systematically in subjectivity. To indicate SUBSUME's usefulness, we explore a collection of baseline algorithms for subjective extractive summarization and show that (i) as expected, example-based approaches better capture subjective intents than query-based ones, and (ii) there is ample scope for improving upon the baseline algorithms, thereby motivating further research on this challenging problem.
As the world continues to fight the COVID-19 pandemic, it is simultaneously fighting an infodemic' -- a flood of disinformation and spread of conspiracy theories leading to health threats and the division of society. To combat this infodemic, there i s an urgent need for benchmark datasets that can help researchers develop and evaluate models geared towards automatic detection of disinformation. While there are increasing efforts to create adequate, open-source benchmark datasets for English, comparable resources are virtually unavailable for German, leaving research for the German language lagging significantly behind. In this paper, we introduce the new benchmark dataset FANG-COVID consisting of 28,056 real and 13,186 fake German news articles related to the COVID-19 pandemic as well as data on their propagation on Twitter. Furthermore, we propose an explainable textual- and social context-based model for fake news detection, compare its performance to black-box'' models and perform feature ablation to assess the relative importance of human-interpretable features in distinguishing fake news from authentic news.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا