Do you want to publish a course? Click here

Negative language transfer in learner English: A new dataset

نقل اللغة السلبية في المتعلم اللغة الإنجليزية: مجموعة بيانات جديدة

377   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Automatic personalized corrective feedback can help language learners from different backgrounds better acquire a new language. This paper introduces a learner English dataset in which learner errors are accompanied by information about possible error sources. This dataset contains manually annotated error causes for learner writing errors. These causes tie learner mistakes to structures from their first languages, when the rules in English and in the first language diverge. This new dataset will enable second language acquisition researchers to computationally analyze a large quantity of learner errors that are related to language transfer from the learners' first language. The dataset can also be applied in personalizing grammatical error correction systems according to the learners' first language and in providing feedback that is informed by the cause of an error.



References used
https://aclanthology.org/
rate research

Read More

Reviewing contracts is a time-consuming procedure that incurs large expenses to companies and social inequality to those who cannot afford it. In this work, we propose document-level natural language inference (NLI) for contracts'', a novel, real-wor ld application of NLI that addresses such problems. In this task, a system is given a set of hypotheses (such as Some obligations of Agreement may survive termination.'') and a contract, and it is asked to classify whether each hypothesis is entailed by'', contradicting to'' or not mentioned by'' (neutral to) the contract as well as identifying evidence'' for the decision as spans in the contract. We annotated and release the largest corpus to date consisting of 607 annotated contracts. We then show that existing models fail badly on our task and introduce a strong baseline, which (a) models evidence identification as multi-label classification over spans instead of trying to predict start and end tokens, and (b) employs more sophisticated context segmentation for dealing with long documents. We also show that linguistic characteristics of contracts, such as negations by exceptions, are contributing to the difficulty of this task and that there is much room for improvement.
The paper introduces a new resource, CoDeRooMor, for studying the morphology of modern Swedish word formation. The approximately 16.000 lexical items in the resource have been manually segmented into word-formation morphemes, and labeled for their ca tegories, such as prefixes, suffixes, roots, etc. Word-formation mechanisms, such as derivation and compounding have been associated with each item on the list. The article describes the selection of items for manual annotation and the principles of annotation, reports on the reliability of the manual annotation, and presents tools, resources and some first statistics. Given the''gold'' nature of the resource, it is possible to use it for empirical studies as well as to develop linguistically-aware algorithms for morpheme segmentation and labeling (cf statistical subword approach). The resource will be made freely available.
How difficult is it for English-as-a-second language (ESL) learners to read noisy English texts? Do ESL learners need lexical normalization to read noisy English texts? These questions may also affect community formation on social networking sites wh ere differences can be attributed to ESL learners and native English speakers. However, few studies have addressed these questions. To this end, we built highly accurate readability assessors to evaluate the readability of texts for ESL learners. We then applied these assessors to noisy English texts to further assess the readability of the texts. The experimental results showed that although intermediate-level ESL learners can read most noisy English texts in the first place, lexical normalization significantly improves the readability of noisy English texts for ESL learners.
A text retrieval system for language learning returns reading materials at the appropriate difficulty level for the user. The system typically maintains a learner model on the user's vocabulary knowledge, and identifies texts that best fit the model. As the user's language proficiency increases, model updates are necessary to retrieve texts with the corresponding lexical complexity. We investigate an open learner model that allows user modification of its content, and evaluate its effectiveness with respect to the amount of user update effort. We compare this model with the graded approach, in which the system returns texts at the optimal grade. When the user makes at least half of the expected updates to the open learner model, simulation results show that it outperforms the graded approach in retrieving texts that fit user preference for new-word density.
We introduce a high-quality and large-scale Vietnamese-English parallel dataset of 3.02M sentence pairs, which is 2.9M pairs larger than the benchmark Vietnamese-English machine translation corpus IWSLT15. We conduct experiments comparing strong neur al baselines and well-known automatic translation engines on our dataset and find that in both automatic and human evaluations: the best performance is obtained by fine-tuning the pre-trained sequence-to-sequence denoising auto-encoder mBART. To our best knowledge, this is the first large-scale Vietnamese-English machine translation study. We hope our publicly available dataset and study can serve as a starting point for future research and applications on Vietnamese-English machine translation. We release our dataset at: https://github.com/VinAIResearch/PhoMT

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا