Do you want to publish a course? Click here

Unknown Intent Detection Using Multi-Objective Optimization on Deep Learning Classifiers

اكتشاف نية غير معروف باستخدام تحسين متعدد الأهداف على طبق التعلم العميق

314   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Modelling and understanding dialogues in a conversation depends on identifying the user intent from the given text. Unknown or new intent detection is a critical task, as in a realistic scenario a user intent may frequently change over time and divert even to an intent previously not encountered. This task of separating the unknown intent samples from known intents one is challenging as the unknown user intent can range from intents similar to the predefined intents to something completely different. Prior research on intent discovery often consider it as a classification task where an unknown intent can belong to a predefined set of known intent classes. In this paper we tackle the problem of detecting a completely unknown intent without any prior hints about the kind of classes belonging to unknown intents. We propose an effective post-processing method using multi-objective optimization to tune an existing neural network based intent classifier and make it capable of detecting unknown intents. We perform experiments using existing state-of-the-art intent classifiers and use our method on top of them for unknown intent detection. Our experiments across different domains and real-world datasets show that our method yields significant improvements compared with the state-of-the-art methods for unknown intent detection.



References used
https://aclanthology.org/
rate research

Read More

Stance detection determines whether the author of a text is in favor of, against or neutral to a specific target and provides valuable insights into important events such as legalization of abortion. Despite significant progress on this task, one of the remaining challenges is the scarcity of annotations. Besides, most previous works focused on a hard-label training in which meaningful similarities among categories are discarded during training. To address these challenges, first, we evaluate a multi-target and a multi-dataset training settings by training one model on each dataset and datasets of different domains, respectively. We show that models can learn more universal representations with respect to targets in these settings. Second, we investigate the knowledge distillation in stance detection and observe that transferring knowledge from a teacher model to a student model can be beneficial in our proposed training settings. Moreover, we propose an Adaptive Knowledge Distillation (AKD) method that applies instance-specific temperature scaling to the teacher and student predictions. Results show that the multi-dataset model performs best on all datasets and it can be further improved by the proposed AKD, outperforming the state-of-the-art by a large margin. We publicly release our code.
The exponential growth of the internet and social media in the past decade gave way to the increase in dissemination of false or misleading information. Since the 2016 US presidential election, the term fake news'' became increasingly popular and thi s phenomenon has received more attention. In the past years several fact-checking agencies were created, but due to the great number of daily posts on social media, manual checking is insufficient. Currently, there is a pressing need for automatic fake news detection tools, either to assist manual fact-checkers or to operate as standalone tools. There are several projects underway on this topic, but most of them focus on English. This research-in-progress paper discusses the employment of deep learning methods, and the development of a tool, for detecting false news in Portuguese. As a first step we shall compare well-established architectures that were tested in other languages and analyse their performance on our Portuguese data. Based on the preliminary results of these classifiers, we shall choose a deep learning model or combine several deep learning models which hold promise to enhance the performance of our fake news detection system.
Molecular docking is a hard optimization problem that has been tackled in the past, demonstrating new and challenging results when looking for one objective . However, only a few papers can be found in the literature that deal with this problem by means of a multi-objective approach, and no experimental comparisons have been made in order to clarify which of them has the best overall performance. In this research, we use and compare, a set of representative multi-objective optimization algorithms. The approach followed is focused on optimizing the inter-molecular and intra-molecular energies as two main objectives to minimize.
Due to its great power in modeling non-Euclidean data like graphs or manifolds, deep learning on graph techniques (i.e., Graph Neural Networks (GNNs)) have opened a new door to solving challenging graph-related NLP problems. There has seen a surge of interests in applying deep learning on graph techniques to NLP, and has achieved considerable success in many NLP tasks, ranging from classification tasks like sentence classification, semantic role labeling and relation extraction, to generation tasks like machine translation, question generation and summarization. Despite these successes, deep learning on graphs for NLP still face many challenges, including automatically transforming original text sequence data into highly graph-structured data, and effectively modeling complex data that involves mapping between graph-based inputs and other highly structured output data such as sequences, trees, and graph data with multi-types in both nodes and edges. This tutorial will cover relevant and interesting topics on applying deep learning on graph techniques to NLP, including automatic graph construction for NLP, graph representation learning for NLP, advanced GNN based models (e.g., graph2seq, graph2tree, and graph2graph) for NLP, and the applications of GNNs in various NLP tasks (e.g., machine translation, natural language generation, information extraction and semantic parsing). In addition, hands-on demonstration sessions will be included to help the audience gain practical experience on applying GNNs to solve challenging NLP problems using our recently developed open source library -- Graph4NLP, the first library for researchers and practitioners for easy use of GNNs for various NLP tasks.
Deep learning is at the heart of the current rise of artificial intelligence. In the field of Computer Vision, it has become the workhorse for applications ranging from self-driving cars to surveillance and security. Whereas deep neural networks have demonstrated phenomenal success (often beyond human capabilities) in solving complex problems, recent studies show that they are vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict incorrect outputs. For images, such perturbations are often too small to be perceptible, yet they completely fool the deep learning models. Adversarial attacks pose a serious threat to the success of deep learning in practice. This fact has recently lead to a large influx of contributions in this direction. This article presents a survey on adversarial attacks on deep learning in Computer Vision. We review the works that design adversarial attacks, analyze the existence of such attacks and propose defenses against them

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا