يعتبر التعلم العميق القلب النابض للذكاء الصنعي في السنوات الأخيرة، وفي ظل تراوح تطبيقاته بين السيارات ذاتية القيادة وصولًا إلى التحليلات الطبية وغير ذلك، وقدرته على حل المشاكل المعقدة متفوقًا على الإنسان في الكثير من الأحيان، بدا أننا وصلنا للحل النهائي لمشاكل الذكاء الصنعي، لكن ظهور الهجمات الخادعة أصبح العائق الأساسي لتوظيف التطبيقات التي تعتمد على التعلم العميق كبديل للإنسان، وأصبح التطبيقات الأخيرة تحت المجهر لدراسة قدرتها على منع هذه الهجمات، نستعرض في هذا البحث تعريف الهجوم الخادع وطرقه بشكل عام، ثم نتطرق إلى تطبيقين محورين يمكن مهاجمتهما من خلاله ونعرض كيف نتصدى لهذه الهجمات، مرورًا بمقارنة النماذج الإحصائية مع الإنسان وكون الهجمات الخادعة جزءًا أساسيًا من الأنظمة التي تعتمد على المعطيات للقيام بمهامها.
Deep learning is at the heart of the current rise of artificial intelligence. In the field of Computer Vision, it has become the workhorse for applications ranging from self-driving cars to surveillance and security. Whereas deep neural networks have demonstrated phenomenal success (often beyond human capabilities) in solving complex problems, recent studies show that they are vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict incorrect outputs. For images, such perturbations are often too small to be perceptible, yet they completely fool the deep learning models. Adversarial attacks pose a serious threat to the success of deep learning in practice. This fact has recently lead to a large influx of contributions in this direction. This article presents a survey on adversarial attacks on deep learning in Computer Vision. We review the works that design adversarial attacks, analyze the existence of such attacks and propose defenses against them
References used
Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno: “Robust Physical-World Attacks on Deep Learning Models”, 2017; arXiv:1707.08945.
Wieland Brendel, Jonas Rauber: “Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models”, 2017; arXiv:1712.04248.
Samuel G. Finlayson, Isaac S. Kohane: “Adversarial Attacks Against Medical Deep Learning Systems”, 2018; arXiv:1804.05296.
Naveed Akhtar: “Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey”, 2018; arXiv:1801.00553.
Ian J. Goodfellow, Jonathon Shlens: “Explaining and Harnessing Adversarial Examples”, 2014; arXiv:1412.6572.
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville: “Generative Adversarial Networks”, 2014; arXiv:1406.2661.
Pouya Samangouei, Maya Kabkab: “Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models”, 2018; arXiv:1805.06605.