يمكن أن تولد الأساليب الحديثة القائمة على المحولات إلى NLG مثل GPT-2 إنشاء نصوص أصلية متماسكة بشكل ملائم.ومع ذلك، فإن هذه النصوص التي تم إنشاؤها لها عيوب خطيرة: خطاب عالمي يتعارض مع الجمل من حيث قيم الكيان.نحن نتناول كل من هذه العيوب: أنها مستقلة ولكن يمكن دمجها لتوليد النصوص الأصلية التي ستكون متسقة وصادقة.تقدم هذه الورقة نهجا لتقدير جودة هيكل الخطاب.تؤكد النتائج التجريبية أن هيكل الخطاب للنصوص التي تم إنشاؤها حاليا غير دقيق.نقترح اتجاهات البحث لتصحيحه باستخدام ميزات الخطاب أثناء إجراء ضبط الدقيقة.النهج المقترح عالمي ويمكن تطبيقه على لغات مختلفة.بصرف النظر عن ذلك، نقترح طريقة لتصحيح قيم الكيان الخاطئة استنادا إلى تعدين الويب ومحاذاة النص.
Recent transformer-based approaches to NLG like GPT-2 can generate syntactically coherent original texts. However, these generated texts have serious flaws: global discourse incoherence and meaninglessness of sentences in terms of entity values. We address both of these flaws: they are independent but can be combined to generate original texts that will be both consistent and truthful. This paper presents an approach to estimate the quality of discourse structure. Empirical results confirm that the discourse structure of currently generated texts is inaccurate. We propose the research directions to correct it using discourse features during the fine-tuning procedure. The suggested approach is universal and can be applied to different languages. Apart from that, we suggest a method to correct wrong entity values based on Web Mining and text alignment.
References used
https://aclanthology.org/
We describe our approach for SemEval-2021 task 6 on detection of persuasion techniques in multimodal content (memes). Our system combines pretrained multimodal models (CLIP) and chained classifiers. Also, we propose to enrich the data by a data augmentation technique. Our submission achieves a rank of 8/16 in terms of F1-micro and 9/16 with F1-macro on the test set.
The aim of this investigation is to explore the main rhetorical
features of an Arabic newspaper discourse. To this end, extracts form
two popular Jordanian newspapers were analyzed. The results of this
study indicate that one of the features of th
Sensitivity of deep-neural models to input noise is known to be a challenging problem. In NLP, model performance often deteriorates with naturally occurring noise, such as spelling errors. To mitigate this issue, models may leverage artificially nois
This paper describes our approach (IIITH) for SemEval-2021 Task 5: HaHackathon: Detecting and Rating Humor and Offense. Our results focus on two major objectives: (i) Effect of task adaptive pretraining on the performance of transformer based models
Service Oriented Computing (SOC) is changing the way of developing software systems.
Each web service has a specific purpose to serve, so it can not satisfy users’ request.
In this paper, we propose a Web services composition method based on OWL on