Do you want to publish a course? Click here

Arabic Newspapers Discourse: Rhetorical Features, Discourse Markers, Strategies and Organization

الخطاب الصحفي العربي مظاهر بلاغية، أدوات الخطاب، استراتيجيات و تنظيمات

2311   1   151   0 ( 0 )
 Publication date 2007
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The aim of this investigation is to explore the main rhetorical features of an Arabic newspaper discourse. To this end, extracts form two popular Jordanian newspapers were analyzed. The results of this study indicate that one of the features of this type of discourse is redundancy, i.e. repetition of the same lexical item. Another feature is the explicit use of evaluative statements to support the writer’s point of view. Moreover, the results of this study revealed that Arabic newspaper discourse clearly marks clause relations especially subordinating clauses, and that discourse markers are mainly used to mark the relationships of contrast between or among propositions in this type of discourse.


Artificial intelligence review:
Research summary
تهدف هذه الدراسة إلى استكشاف السمات البلاغية الرئيسية لخطاب الصحف العربية. تم تحليل مقتطفات من صحيفتين أردنيتين شهيرتين، وهما الرأي والدستور. تشير نتائج الدراسة إلى أن أحد السمات البارزة لهذا النوع من الخطاب هو التكرار، أي تكرار نفس العنصر اللفظي. سمة أخرى هي الاستخدام الصريح للبيانات التقييمية لدعم وجهة نظر الكاتب. كما كشفت النتائج أن خطاب الصحف العربية يميز بوضوح العلاقات بين الجمل، خاصة الجمل التابعة، وأن علامات الخطاب تُستخدم بشكل رئيسي لتحديد علاقات التباين بين أو بين المقترحات في هذا النوع من الخطاب. تتناول الدراسة أيضًا كيفية تنظيم خطاب الصحف العربية والاستراتيجيات الرئيسية التي يستخدمها الكتاب في إبراز وجهات نظرهم، بالإضافة إلى استخدام المفردات في تطوير الخطاب الصحفي. تم جمع البيانات على مدى ثلاثة أشهر من الصفحات الأمامية والخلفية للصحف، وتم تحليلها لاستكشاف طرق تنظيم الخطاب، واستراتيجيات الخطاب المستخدمة، وعلامات الخطاب المختلفة، واستخدام المفردات. تهدف هذه الدراسة إلى المساهمة في فهمنا لخطاب الصحف العربية من خلال تتبع الروابط التفسيرية بين طرق تنظيم النصوص وتفسيرها، مع التركيز على الهياكل النصية للأخبار وتجاهل الظروف والسياقات المختلفة التي تؤثر على هذه الهياكل النصية. كما تستكشف الدراسة درجات الحيادية أو التحيز التي تظهر في اختيار الكلمات التي يستخدمها الصحفيون. تشير النتائج إلى أن خطاب الصحف العربية يستخدم بشكل واضح علامات الخطاب، خاصة لتحديد علاقات التباين بين المقترحات، وأن البيانات التقييمية مدمجة في هذا النوع من الخطاب لدعم وجهة نظر الكاتب.
Critical review
دراسة نقدية: تعتبر هذه الدراسة خطوة مهمة نحو فهم أعمق لخطاب الصحف العربية، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الممكن توسيع نطاق الدراسة لتشمل صحف من دول عربية أخرى للحصول على صورة أكثر شمولية. ثانيًا، على الرغم من التركيز على السمات البلاغية، إلا أن الدراسة لم تتناول بشكل كافٍ تأثير السياق الاجتماعي والسياسي على الخطاب الصحفي. ثالثًا، كان من الممكن استخدام منهجيات تحليلية أكثر تنوعًا لتقديم رؤية أكثر عمقًا. وأخيرًا، كان من الممكن توضيح كيفية تأثير هذه السمات البلاغية على القراء بشكل أكبر.
Questions related to the research
  1. ما هي السمات البلاغية الرئيسية لخطاب الصحف العربية التي تم تحديدها في الدراسة؟

    السمات البلاغية الرئيسية هي التكرار والاستخدام الصريح للبيانات التقييمية لدعم وجهة نظر الكاتب، بالإضافة إلى التمييز الواضح للعلاقات بين الجمل خاصة الجمل التابعة، واستخدام علامات الخطاب لتحديد علاقات التباين بين المقترحات.

  2. ما هي أهمية علامات الخطاب في خطاب الصحف العربية وفقًا للدراسة؟

    علامات الخطاب تُستخدم بشكل رئيسي لتحديد العلاقات بين المقترحات في النص، خاصة لتحديد علاقات التباين، وتساعد في تنظيم النص وتوجيه القارئ لفهم العلاقات بين الأجزاء المختلفة من الخطاب.

  3. كيف تم جمع البيانات المستخدمة في هذه الدراسة؟

    تم جمع البيانات من مقتطفات من الصفحات الأمامية والخلفية لصحيفتين أردنيتين شهيرتين، الرأي والدستور، على مدى ثلاثة أشهر من أبريل إلى يونيو 2005.

  4. ما هي الانتقادات التي يمكن توجيهها لهذه الدراسة؟

    يمكن توجيه انتقادات مثل الحاجة لتوسيع نطاق الدراسة لتشمل صحف من دول عربية أخرى، وتناول تأثير السياق الاجتماعي والسياسي بشكل أعمق، واستخدام منهجيات تحليلية أكثر تنوعًا، وتوضيح تأثير السمات البلاغية على القراء بشكل أكبر.


References used
Al-Jubouri, Adnan, J.R. (1983) "The Role of Repetition in Arabic Argumentative Discourse". In Swales, J. and Mustafa, H. (eds.) English for Specific Purposes in the Arab World, PP.99-117. The Language Studies Unit, University of Aston, Birmingham: UK
Agee, W., Ault, P. and Emery, E.(1983) Reporting and writing the news. Harper and Row Publishers: New York
Altschull, J.H. (1984) Agents of Power. Longman: New York and London
rate research

Read More

Recent transformer-based approaches to NLG like GPT-2 can generate syntactically coherent original texts. However, these generated texts have serious flaws: global discourse incoherence and meaninglessness of sentences in terms of entity values. We a ddress both of these flaws: they are independent but can be combined to generate original texts that will be both consistent and truthful. This paper presents an approach to estimate the quality of discourse structure. Empirical results confirm that the discourse structure of currently generated texts is inaccurate. We propose the research directions to correct it using discourse features during the fine-tuning procedure. The suggested approach is universal and can be applied to different languages. Apart from that, we suggest a method to correct wrong entity values based on Web Mining and text alignment.
Sentence splitting involves the segmentation of a sentence into two or more shorter sentences. It is a key component of sentence simplification, has been shown to help human comprehension and is a useful preprocessing step for NLP tasks such as summa risation and relation extraction. While several methods and datasets have been proposed for developing sentence splitting models, little attention has been paid to how sentence splitting interacts with discourse structure. In this work, we focus on cases where the input text contains a discourse connective, which we refer to as discourse-based sentence splitting. We create synthetic and organic datasets for discourse-based splitting and explore different ways of combining these datasets using different model architectures. We show that pipeline models which use discourse structure to mediate sentence splitting outperform end-to-end models in learning the various ways of expressing a discourse relation but generate text that is less grammatical; that large scale synthetic data provides a better basis for learning than smaller scale organic data; and that training on discourse-focused, rather than on general sentence splitting data provides a better basis for discourse splitting.
We propose neural models to generate text from formal meaning representations based on Discourse Representation Structures (DRSs). DRSs are document-level representations which encode rich semantic detail pertaining to rhetorical relations, presuppos ition, and co-reference within and across sentences. We formalize the task of neural DRS-to-text generation and provide modeling solutions for the problems of condition ordering and variable naming which render generation from DRSs non-trivial. Our generator relies on a novel sibling treeLSTM model which is able to accurately represent DRS structures and is more generally suited to trees with wide branches. We achieve competitive performance (59.48 BLEU) on the GMB benchmark against several strong baselines.
Politicians often have underlying agendas when reacting to events. Arguments in contexts of various events reflect a fairly consistent set of agendas for a given entity. In spite of recent advances in Pretrained Language Models, those text representa tions are not designed to capture such nuanced patterns. In this paper, we propose a Compositional Reader model consisting of encoder and composer modules, that captures and leverages such information to generate more effective representations for entities, issues, and events. These representations are contextualized by tweets, press releases, issues, news articles, and participating entities. Our model processes several documents at once and generates composed representations for multiple entities over several issues or events. Via qualitative and quantitative empirical analysis, we show that these representations are meaningful and effective.
Discourse parsers recognize the intentional and inferential relationships that organize extended texts. They have had a great influence on a variety of NLP tasks as well as theoretical studies in linguistics and cognitive science. However it is often difficult to achieve good results from current discourse models, largely due to the difficulty of the task, particularly recognizing implicit discourse relations. Recent developments in transformer-based models have shown great promise on these analyses, but challenges still remain. We present a position paper which provides a systematic analysis of the state of the art discourse parsers. We aim to examine the performance of current discourse parsing models via gradual domain shift: within the corpus, on in-domain texts, and on out-of-domain texts, and discuss the differences between the transformer-based models and the previous models in predicting different types of implicit relations both inter- and intra-sentential. We conclude by describing several shortcomings of the existing models and a discussion of how future work should approach this problem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا