درسنا في هذا البحث تمثيل الأعداد الأولية بالصيغة التربيعية الثنائية الصحيحة معتمدين في ذلك على أهم المفاهيم و النظريات حول الصيغ التربيعية الثنائية الصحيحة وعلى مفهوم الصنف Genus بالإضافة إلى معيار قابلية الحل للمعادلة الديوفانتية .
We study in this paper representing prime integers by binary quadratic form Depending on the definitions and theorems about binary quadratic
form particularly on genus definition beside the solvability of equation.
Artificial intelligence review:
Research summary
تناول البحث دراسة تمثيل الأعداد الأولية باستخدام الصيغ التربيعية الثنائية الصحيحة من الشكل f(x,y) = ax² + 2bxy - kay² حيث k > 0. اعتمدت الدراسة على المفاهيم والنظريات المتعلقة بالصيغ التربيعية الثنائية الصحيحة، بالإضافة إلى مفهوم الصنف Genus ومعيار قابلية الحل للمعادلة الديوفانتية. تم تطبيق الدراسة على صيغتين محددتين هما f(x,y) = 3x² + 10xy - 6y² و g(x,y) = -x² + 8xy + 3y². هدفت الدراسة إلى إيجاد الأعداد الأولية التي يمكن تمثيلها بهذه الصيغ، وتم تحديد شروط الحلول الممكنة باستخدام نظريات رياضية معقدة. كما تم تقديم أمثلة تطبيقية على حالات محددة من الصيغ التربيعية، وتم تحليل النتائج باستخدام أدوات رياضية متقدمة.
Critical review
دراسة نقدية: يعد هذا البحث إضافة قيمة إلى مجال نظرية الأعداد، حيث يقدم طريقة جديدة لتمثيل الأعداد الأولية باستخدام الصيغ التربيعية الثنائية الصحيحة. ومع ذلك، يمكن توجيه بعض النقد البناء للبحث. أولاً، قد تكون بعض المفاهيم الرياضية المعقدة غير واضحة للقارئ غير المتخصص، مما يتطلب تبسيط الشروحات أو تقديم أمثلة توضيحية أكثر. ثانياً، كان من الممكن تعزيز البحث بمزيد من التطبيقات العملية أو الربط بين النتائج النظرية والتطبيقات العملية في مجالات أخرى. أخيراً، يمكن أن تكون هناك حاجة لمزيد من الدراسات المستقبلية لتأكيد النتائج وتوسيع نطاق البحث ليشمل حالات أخرى من الصيغ التربيعية.
Questions related to the research
-
ما هو الهدف الرئيسي من البحث؟
الهدف الرئيسي من البحث هو إيجاد الأعداد الأولية التي يمكن تمثيلها بصيغ تربيعية ثنائية صحيحة من الشكل f(x,y) = ax² + 2bxy - kay² حيث k > 0.
-
ما هي الصيغ التربيعية التي تم تطبيق الدراسة عليها؟
تم تطبيق الدراسة على صيغتين هما f(x,y) = 3x² + 10xy - 6y² و g(x,y) = -x² + 8xy + 3y².
-
ما هي المفاهيم الرياضية التي اعتمدت عليها الدراسة؟
اعتمدت الدراسة على المفاهيم والنظريات المتعلقة بالصيغ التربيعية الثنائية الصحيحة، بالإضافة إلى مفهوم الصنف Genus ومعيار قابلية الحل للمعادلة الديوفانتية.
-
ما هي التوصيات التي قدمها الباحثون في نهاية الدراسة؟
أوصى الباحثون بدراسة تمثيل الأعداد من أجل حالة عدد الصفوف أكبر من 2 بأسلوب مشابه للأسلوب الذي اعتمدوه في بحثهم.
References used
BUELL,D.A. Binary quadratic forms classical and modern computations ,springer, newhom,1989
MOLLIN,A.R.advanced number theory with applictions,CRC,Canada,2010,481
HARVEY,C. Advanced number theory ,inc .newhom.1962.275
Relational triple extraction is a crucial task for knowledge graph construction. Existing methods mainly focused on explicit relational triples that are directly expressed, but usually suffer from ignoring implicit triples that lack explicit expressi
P-NP-problem is the most important issue in computing theory and computational
complexity,Through her study has been defined and studied the ranks of other complexity such
ascoNP, PP, P ..
In this paper we have defined new complexity classes for polynomial time non deterministic
Turing Machine using prime and composite numbers for k-prime numbers.
NLP systems rarely give special consideration to numbers found in text. This starkly contrasts with the consensus in neuroscience that, in the brain, numbers are represented differently from words. We arrange recent NLP work on numeracy into a compre
Abstract Meaning Representation (AMR) has become popular for representing the meaning of natural language in graph structures. However, AMR does not represent scope information, posing a problem for its overall expressivity and specifically for drawi
In this paper , we will study the ability to solve Pell's equation in the
set Z, we give necessary and sufficient conditions to solve this equation , depending on the
ideals in orders of the real quadratic fields .We also introduce the formula of the opposite
ideal for every solution of this equation , in special cases.