الاستخراج الثلاثي العلائقية هي مهمة حاسمة لبناء الرسم البياني المعارف. تركز الأساليب الحالية أساسا على ثلاثة أضعاف ثلاثية صحيحة يتم التعبير عنها بشكل مباشر، ولكن عادة ما تعاني من تجاهل ثلاث مرات ضمنية تفتقر إلى التعبيرات الصريحة. هذا سيؤدي إلى عدم اكتمال خطير الرسوم البيانية المعرفة المبنية. لحسن الحظ، توفر ثلاث مرات أخرى في الجملة معلومات تكميلية لاكتشاف أزواج الكيانات التي قد تكون لها علاقات ضمنية. أيضا، يمكن تحديد أنواع العلاقات بين أزواج الكيان المتصلة الضمنيا مع أنماط التفكير العلائقية في العالم الحقيقي. في هذه الورقة، نقترح إطارا موحدا لاستخراج ثلاثة أضعاف ثلاثياتي صريحة وضرورية. لاستكشاف أزواج الكيانات التي قد تكون مرتبطة ضمنيا بالعلاقات، نقترح شبكة مؤشر ثنائية لاستخراج ثلاث مرات متداخلة ثلاثية ذات صلة بكل كلمة بالتتابع والاحتفاظ بمعلومات ثلاث مرات المستخرجة سابقا في ذاكرة خارجية. لاستنتاج أنواع العلاقات ثلاث مرات التوالي الضمنية، نقترح تقديم أنماط التفكير العلائقية العالمية الحقيقية في طرازنا والتقاط هذه الأنماط مع شبكة العلاقة. نقوم بإجراء تجارب على عدة مجموعات من مجموعات البيانات القياسية، وتثبت النتائج صحة طريقتنا.
Relational triple extraction is a crucial task for knowledge graph construction. Existing methods mainly focused on explicit relational triples that are directly expressed, but usually suffer from ignoring implicit triples that lack explicit expressions. This will lead to serious incompleteness of the constructed knowledge graphs. Fortunately, other triples in the sentence provide supplementary information for discovering entity pairs that may have implicit relations. Also, the relation types between the implicitly connected entity pairs can be identified with relational reasoning patterns in the real world. In this paper, we propose a unified framework to jointly extract explicit and implicit relational triples. To explore entity pairs that may be implicitly connected by relations, we propose a binary pointer network to extract overlapping relational triples relevant to each word sequentially and retain the information of previously extracted triples in an external memory. To infer the relation types of implicit relational triples, we propose to introduce real-world relational reasoning patterns in our model and capture these patterns with a relation network. We conduct experiments on several benchmark datasets, and the results prove the validity of our method.
References used
https://aclanthology.org/
Math word problem solving has attracted considerable research interest in recent years. Previous works have shown the effectiveness of utilizing graph neural networks to capture the relationships in the problem. However, these works did not carefully
We study in this paper representing prime integers by binary quadratic form Depending on the definitions and theorems about binary quadratic
form particularly on genus definition beside the solvability of equation.
Joint entity and relation extraction is challenging due to the complex interaction of interaction between named entity recognition and relation extraction. Although most existing works tend to jointly train these two tasks through a shared network, t
Embedding based methods are widely used for unsupervised keyphrase extraction (UKE) tasks. Generally, these methods simply calculate similarities between phrase embeddings and document embedding, which is insufficient to capture different context for
Abstract Tracking dialogue states to better interpret user goals and feed downstream policy learning is a bottleneck in dialogue management. Common practice has been to treat it as a problem of classifying dialogue content into a set of pre-defined s