Do you want to publish a course? Click here

Representing Implicit Positive Meaning of Negated Statements in AMR

تمثيل المعنى الإيجابي الضمني للبيانات المنفذة في عمرو

292   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Abstract Meaning Representation (AMR) has become popular for representing the meaning of natural language in graph structures. However, AMR does not represent scope information, posing a problem for its overall expressivity and specifically for drawing inferences from negated statements. This is the case with so-called positive interpretations'' of negated statements, in which implicit positive meaning is identified by inferring the opposite of the negation's focus. In this work, we investigate how potential positive interpretations (PPIs) can be represented in AMR. We propose a logically motivated AMR structure for PPIs that makes the focus of negation explicit and sketch an initial proposal for a systematic methodology to generate this more expressive structure.



References used
https://aclanthology.org/
rate research

Read More

The field of NLP has made substantial progress in building meaning representations. However, an important aspect of linguistic meaning, social meaning, has been largely overlooked. We introduce the concept of social meaning to NLP and discuss how insights from sociolinguistics can inform work on representation learning in NLP. We also identify key challenges for this new line of research.
Translation divergences are varied and widespread, challenging approaches that rely on parallel text. To annotate translation divergences, we propose a schema grounded in the Abstract Meaning Representation (AMR), a sentence-level semantic framework instantiated for a number of languages. By comparing parallel AMR graphs, we can identify specific points of divergence. Each divergence is labeled with both a type and a cause. We release a small corpus of annotated English-Spanish data, and analyze the annotations in our corpus.
Abstract Meaning Representation parsing is a sentence-to-graph prediction task where target nodes are not explicitly aligned to sentence tokens. However, since graph nodes are semantically based on one or more sentence tokens, implicit alignments can be derived. Transition-based parsers operate over the sentence from left to right, capturing this inductive bias via alignments at the cost of limited expressiveness. In this work, we propose a transition-based system that combines hard-attention over sentences with a target-side action pointer mechanism to decouple source tokens from node representations and address alignments. We model the transitions as well as the pointer mechanism through straightforward modifications within a single Transformer architecture. Parser state and graph structure information are efficiently encoded using attention heads. We show that our action-pointer approach leads to increased expressiveness and attains large gains (+1.6 points) against the best transition-based AMR parser in very similar conditions. While using no graph re-categorization, our single model yields the second best Smatch score on AMR 2.0 (81.8), which is further improved to 83.4 with silver data and ensemble decoding.
NLP systems rarely give special consideration to numbers found in text. This starkly contrasts with the consensus in neuroscience that, in the brain, numbers are represented differently from words. We arrange recent NLP work on numeracy into a compre hensive taxonomy of tasks and methods. We break down the subjective notion of numeracy into 7 subtasks, arranged along two dimensions: granularity (exact vs approximate) and units (abstract vs grounded). We analyze the myriad representational choices made by over a dozen previously published number encoders and decoders. We synthesize best practices for representing numbers in text and articulate a vision for holistic numeracy in NLP, comprised of design trade-offs and a unified evaluation.
We study multilingual AMR parsing from the perspective of knowledge distillation, where the aim is to learn and improve a multilingual AMR parser by using an existing English parser as its teacher. We constrain our exploration in a strict multilingua l setting: there is but one model to parse all different languages including English. We identify that noisy input and precise output are the key to successful distillation. Together with extensive pre-training, we obtain an AMR parser whose performances surpass all previously published results on four different foreign languages, including German, Spanish, Italian, and Chinese, by large margins (up to 18.8 Smatch points on Chinese and on average 11.3 Smatch points). Our parser also achieves comparable performance on English to the latest state-of-the-art English-only parser.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا