Do you want to publish a course? Click here

Study the Convergence of Moreau – Bregman Envelope in Reflexive Banach Spaces

دراسة تقارب غلاف مورو- بريغمان في فضاءات باناخ الانعكاسية

1345   1   13   0.0 ( 0 )
 Publication date 2018
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

It is often useful to replace a function with a sequence of smooth functions approximating the given function to resolve minimizing optimization problems. The most famous one is the Moreau envelope. Recently the function was organized using the Bregman distance h D . It is worth noting that Bregman distance h D is not a distance in the usual sense of the term. In general, it is not symmetric and it does not satisfy the triangle inequality The purpose of the research is to study the convergence of the Moreau envelope function and the related proximal mapping depends on Bregman Distance for a function on Banach space. Proved equivalence between Mosco-epi-convergence of sequence functions and pointwise convergence of Moreau-Bregman envelope We also studied the strong and weak convergence of resolvent operators According to the concept of Bregman distance.


Artificial intelligence review:
Research summary
تتناول هذه الدراسة تقارب غلاف مورو - بريغمان في فضاءات باناخ الانعكاسية، حيث يتم استبدال الشكل التربيعي في دالة مورو-يوشيدا بمسافة بريغمان، وهي مسافة غير مترية لا تحقق متراجحة المثلث. يهدف البحث إلى إثبات التكافؤ بين تقارب موسكو فوق البياني لمتتالية من الدوال والتقارب البسيط لدوال مورو-بريغمان، بالإضافة إلى دراسة التقارب القوي والضعيف للمؤثرات الحالة وفق مفهوم مسافة بريغمان. تم تقديم بعض التعاريف والمفاهيم الأساسية المتعلقة بالتحليل المحدب ومسافة بريغمان، وتم إثبات بعض النتائج الهامة المتعلقة بتقارب هذه الدوال في فضاءات باناخ الانعكاسية. توصلت الدراسة إلى أن استخدام مسافة بريغمان بدلاً من الشكل التربيعي في دالة مورو-يوشيدا يمكن أن يكون له تطبيقات هامة في تصميم الخوارزميات التكرارية لحل مسائل الأمثليات وحساب التغيرات والنقطة الثابتة للمؤثرات.
Critical review
دراسة نقدية: على الرغم من أن البحث يقدم مساهمات هامة في مجال التحليل المحدب وتطبيقات مسافة بريغمان، إلا أنه يمكن ملاحظة بعض النقاط التي قد تحتاج إلى مزيد من التوضيح أو البحث المستقبلي. أولاً، قد يكون من المفيد تقديم أمثلة تطبيقية توضح كيفية استخدام النتائج النظرية في حل مسائل عملية. ثانياً، يمكن أن تكون الدراسة أكثر شمولاً إذا تم استكشاف فضاءات أخرى غير فضاءات باناخ الانعكاسية. وأخيراً، قد يكون من المفيد تقديم مقارنة بين مسافة بريغمان والمسافات الأخرى المستخدمة في التحليل المحدب لتوضيح الفوائد والقيود بشكل أكثر تفصيلاً.
Questions related to the research
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي من البحث هو دراسة تقارب غلاف مورو-بريغمان والمؤثر الحال في فضاءات باناخ الانعكاسية، وإثبات التكافؤ بين تقارب موسكو فوق البياني لمتتالية من الدوال والتقارب البسيط لدوال مورو-بريغمان.

  2. ما هي مسافة بريغمان وكيف تختلف عن المسافات التقليدية؟

    مسافة بريغمان هي مسافة غير مترية لا تحقق متراجحة المثلث وليست متناظرة. تُستخدم لقياس المسافة بين نقطتين في الفضاء وتُعرف بالعلاقة بين دالتين محدبتين. تختلف عن المسافات التقليدية بأنها لا تحقق الخصائص التقليدية للمسافات مثل التماثل ومتراجحة المثلث.

  3. ما هي التطبيقات العملية لمسافة بريغمان في التحليل المحدب؟

    تُستخدم مسافة بريغمان في تصميم وتحليل الخوارزميات التكرارية لحل مسائل الأمثليات وحساب التغيرات والنقطة الثابتة للمؤثرات. كما تُستخدم في تعميم خوارزمية النقطة الأقرب (proximal point algorithm).

  4. ما هي النتائج الرئيسية التي توصلت إليها الدراسة؟

    توصلت الدراسة إلى إثبات التكافؤ بين تقارب موسكو فوق البياني لمتتالية من الدوال والتقارب البسيط لدوال مورو-بريغمان في فضاءات باناخ الانعكاسية. كما أثبتت أن استخدام مسافة بريغمان بدلاً من الشكل التربيعي في دالة مورو-يوشيدا يمكن أن يكون له تطبيقات هامة في تصميم الخوارزميات التكرارية.


References used
Attouch H. Variational convergence for functions and operators. Pitman Advanced Publishing Program; 1984
Bauschke HH, Borwein JM. Legendre functions and the method of random Bregman projections. Journal of Convex Analysis. 1997:27-67
Bauschke HH, Borwein JM, Combettes PL. Bregman monotone optimization algorithms. SIAM Journal on control and optimization. 2003;42(2):596-636
rate research

Read More

We define Riemann – Banach space and the space conformal to the Euclidean planer space, then we create The necessary and sufficient conditions in order to be Riemann – Banach space conformal to the Euclidean space, then we prove that constant- curvature Riemann – Banach spaces which have are conformal to the Euclidean space. Finally, we create locally, the measurement in constant curvature Riemann –Banach spaces.
In this work we study the convergence of Haar- Series with real monotone coefficients and find the sum of that series using the generalized liner summing mothed. For we use the special classes.
The purpose of the research is to study the Bergman function and Bergman distance to generalize Moreau – Yosida Approximation. To do that we replace the quadratic additive terms in Moreau – Yosida Approximates by more general Bergman distance and s tudy properties of generalized approximation and prove equivalence between epigraph – convergence and pointwise convergence of the generalized Moreau – Yosida Approximation.
The purpose of the research is to study Bergman distance to generalize Lasry – Lions regularization which play important role of theory optimization. To do that we replace the quardatic additive terms in Lasry – Lions regularization by more gene ral Bergman distance (non metric distance), and study properties generalized approximation and proof its continuous as we give a relationship between the solution minimization sets of function and Lions – Lasry Regularization and others properties.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا