Do you want to publish a course? Click here

Improvement learning rules for Relations Extraction from text

تحسين قواعد التعلم لاستخلاص العلاقات من نص

1166   0   10   0 ( 0 )
 Publication date 2018
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

relation extraction systems have made extensive use of features generated by linguistic analysis modules. Errors in these features lead to errors of relation detection and classification. In this work, we depart from these traditional approaches with complicated feature engineering by introducing a convolutional neural network for relation extraction that automatically learns features from sentences and minimizes the dependence on external toolkits and resources. Our model takes advantages of multiple window sizes for filters and pre-trained word embeddings as an initializer on a nonstatic architecture to improve the performance.


Artificial intelligence review:
Research summary
تناقش هذه الورقة البحثية استخدام الشبكات العصبونية الالتفافية (CNN) لتحسين عملية استخلاص العلاقات من النصوص. تقترح الدراسة نموذجًا يعتمد على التعلم العميق لتوليد ميزات أكثر فعالية من الجمل، مما يقلل من الاعتماد على الأدوات والمصادر الخارجية. يتميز النموذج باستخدام أحجام نوافذ متعددة للمرشحات وتضمينات الكلمات المدربة مسبقًا لتحسين الأداء. تتكون الشبكة من أربع طبقات رئيسية: جداول البحث لترميز الكلمات، الطبقة الالتفافية، طبقة التجميع، وطبقة الانحدار النسبي لأداء التصنيف. تم اختبار النموذج على مجموعتين من البيانات (SemEval-2010 و ACE2005)، وأظهرت النتائج تفوق النموذج المقترح على الأنظمة التقليدية في استخلاص العلاقات.
Critical review
دراسة نقدية: تقدم هذه الورقة مساهمة مهمة في مجال معالجة اللغات الطبيعية باستخدام التعلم العميق، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من المفيد تضمين مقارنة أعمق مع نماذج أخرى غير تقليدية لاستخلاص العلاقات. ثانيًا، لم يتم التطرق بشكل كافٍ إلى تحديات تطبيق النموذج في بيئات متعددة اللغات. وأخيرًا، كان من الممكن تقديم تحليل أكثر تفصيلاً حول تأثير أحجام النوافذ المختلفة على الأداء النهائي للنموذج.
Questions related to the research
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي هو تحسين وتطوير نموذج لحل مشكلة استخلاص العلاقات من النصوص باستخدام التعلم العميق وتوليد ميزات أكثر فعالية لتحسين أداء النظام.

  2. ما هي المكونات الرئيسية للنموذج المقترح؟

    يتكون النموذج من أربع طبقات رئيسية: جداول البحث لترميز الكلمات، الطبقة الالتفافية، طبقة التجميع، وطبقة الانحدار النسبي لأداء التصنيف.

  3. ما هي البيانات التي تم اختبار النموذج عليها؟

    تم اختبار النموذج على مجموعتين من البيانات: SemEval-2010 و ACE2005.

  4. ما هي النتائج التي توصلت إليها الدراسة؟

    أظهرت النتائج أن النموذج المقترح يتفوق بشكل ملحوظ على الأنظمة التقليدية في استخلاص العلاقات، خاصة عند استخدام أحجام نوافذ متعددة وتضمينات الكلمات المدربة مسبقًا.


References used
Blitzer, John, McDonald, Ryan, and Pereira, Fernando (2006). “Domain Adaptation with Structural Correspondence Learning”. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)
Daume, Hal (2007). “Frustratingly Easy Domain Adaptation”. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL)
McClosky, David, Charniak, Eugene, and Johnson, Mark (2010). “Automatic Domain Adaptation for Parsing”. In: Proceedings of the North American Chapter of the Association for Computational Linguistics Conference (HLT NAACL)
rate research

Read More

Document-level relation extraction aims to identify relations between entities in a whole document. Prior efforts to capture long-range dependencies have relied heavily on implicitly powerful representations learned through (graph) neural networks, w hich makes the model less transparent. To tackle this challenge, in this paper, we propose LogiRE, a novel probabilistic model for document-level relation extraction by learning logic rules. LogiRE treats logic rules as latent variables and consists of two modules: a rule generator and a relation extractor. The rule generator is to generate logic rules potentially contributing to final predictions, and the relation extractor outputs final predictions based on the generated logic rules. Those two modules can be efficiently optimized with the expectation-maximization (EM) algorithm. By introducing logic rules into neural networks, LogiRE can explicitly capture long-range dependencies as well as enjoy better interpretation. Empirical results show that significantly outperforms several strong baselines in terms of relation performance and logical consistency. Our code is available at https://github.com/rudongyu/LogiRE.
Information extraction is the task of finding structured information from unstructured or semi-structured text. It is an important task in text mining and has been extensively studied in various research communities including natural language proc essing, information retrieval and Web mining. It has a wide range of applications in domains such as biomedical literature mining and business intelligence. Two fundamental tasks of information extraction are named entity recognition and relation extraction. The former refers to finding names of entities such as people, organizations and locations. The latter refers to finding the semantic relations between entities.
The present study aims to identify the nature of virtual relationships and their distinctive characteristics, and to identify the reasons behind the rush of large numbers of people to join the virtual society and to engage in various economic, soci al, emotional and financial relations, establishing a parallel situation of common relations in the real community. The research also seeks to explore whether values as rules and guidelines for behavior and social relationships in the living societies play the same role in the virtual society? Is the voluntary resort to the virtual society is a voluntary withdrawal from the real society, or merely a transient leap? The researcher mainly used the comparative and historical analysis method, to answer the research questions which formed the research problem, and the results of the basic and secondary assumptions and their validation , and the desired goals. The comparative method is common in research and social studies that seek to reveal similarities and differences regarding specific phenomena that are already forming or have already been formed. This is fully applicable to our current study. The historical approach serves in returning to the distant or near past to identify the techniques of communication and social networking and put all this in the right context according to the requirements of the research and its necessities and purpose.
The speech recognition is one of the most modern technologies, which entered force in various fields of life, whether medical or security or industrial techniques. Accordingly, many related systems were developed, which differ from each otherin fea ture extraction methods and classification methods. In this research,three systems have been created for speech recognition.They differ from each other in the used methods during the stage of features extraction.While the first system used MFCC algorithm, the second system used LPCC algorithm, and the third system used PLP algorithm.All these three systems used HMM as classifier. At the first, the performance of the speechrecognitionprocesswas studied and evaluatedfor all the proposedsystems separately. After that, the combination algorithm was applied separately on eachpair of the studied system algorithmsin order to study the effect of using the combination algorithm onthe improvement of the speech recognition process. Twokinds of errors(simultaneous errors and dependent errors) were usedto evaluate the complementaryof each pair of the studied systems, and to study the effectiveness of the combination on improving the performance of speech recognition process. It can be seen from the results of the comparison that the best improvement ratio of speech recognition has been obtained in the case of collection MFCC and PLP algorithms with recognition ratio of 93.4%.
في الآونة الأخيرة حدث تضخم للمعلومات على شكل أخبار ومقالات مختلفة وجزء كبير من هذه البيانات يكون بشكل غير منظم

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا