Do you want to publish a course? Click here

Studying and Generating Frequency & Phase-Modulated Pulsed Radar Signals

دراسة و توليد الإشارات الرادارية النبضية المعدلة ترددياً و طورياً

706   1   21   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this thesis we study radar pulse compression techniques based on frequency modulation and phase-coded modulation.


Artificial intelligence review:
Research summary
تتناول هذه الأطروحة دراسة وتوليد الإشارات الرادارية النبضية المعدلة ترددياً وطورياً، وهي جزء من متطلبات الحصول على درجة الماجستير في نظم الاتصالات الراديوية. الهدف الرئيسي من الدراسة هو تحسين أداء الرادارات من خلال استخدام تقنيات ضغط النبضات الرادارية، والتي تتيح مدى كشف أكبر وتمييزية عالية في المدى باستخدام نبضات عريضة معدلة ترددياً أو طورياً. يتم في هذا العمل مقارنة بين التعديل الترددي الخطي (LFM) والتعديل الطوري (Phase-Coded)، وكذلك التعديل الترددي غير الخطي (NLFM) والترميز وفق سلسلة كوستاس (Costas Array). تشمل الدراسة أيضاً تحليل تأثير التردد الابتدائي لسجل الإزاحة الخطي ذو التغذية الخلفية على خصائص السلسلة، وتحديد عرض المجال الترددي الأمثل للمرشحات التي تعطي أعلى نسبة إشارة إلى ضجيج (SNR) وأفضل إشارة على خرج المرشح المتوافق. تم بناء واجهة تخاطبية ضمن بيئة ماتلاب لمحاكاة الإشارات الأساسية المستخدمة في رادارات ضغط النبضة واستنتاج خصائصها الأساسية. تتضمن الأطروحة نتائج ومقارنات وضعت في جداول في الملاحق لتبسيط الفهم.
Critical review
دراسة نقدية: تعتبر هذه الأطروحة من الأعمال المهمة في مجال تحسين أداء الرادارات النبضية من خلال استخدام تقنيات متقدمة لضغط النبضات. ومع ذلك، يمكن الإشارة إلى بعض النقاط التي قد تحتاج إلى مزيد من البحث والتطوير. أولاً، لم يتم التطرق بشكل كافٍ إلى تأثير العوامل البيئية المختلفة مثل التداخل الكهرومغناطيسي والضجيج البيئي على أداء الرادارات. ثانياً، يمكن تحسين الدراسة من خلال تضمين تجارب عملية ميدانية لتأكيد النتائج النظرية والمحاكاة. ثالثاً، قد يكون من المفيد استكشاف تقنيات تعديل أخرى قد تكون أكثر فعالية في ظروف معينة. وأخيراً، يمكن تحسين الأطروحة من خلال تقديم توصيات واضحة لتطبيق النتائج في الأنظمة الرادارية الفعلية.
Questions related to the research
  1. ما هو الهدف الرئيسي من الدراسة؟

    الهدف الرئيسي هو تحسين أداء الرادارات من خلال استخدام تقنيات ضغط النبضات الرادارية، مما يتيح مدى كشف أكبر وتمييزية عالية في المدى باستخدام نبضات عريضة معدلة ترددياً أو طورياً.

  2. ما هي التقنيات المستخدمة في الدراسة لتحسين أداء الرادارات؟

    التقنيات المستخدمة تشمل التعديل الترددي الخطي (LFM)، التعديل الطوري (Phase-Coded)، التعديل الترددي غير الخطي (NLFM)، والترميز وفق سلسلة كوستاس (Costas Array).

  3. ما هي الأدوات التي تم استخدامها لمحاكاة الإشارات الرادارية؟

    تم بناء واجهة تخاطبية ضمن بيئة ماتلاب لمحاكاة الإشارات الأساسية المستخدمة في رادارات ضغط النبضة واستنتاج خصائصها الأساسية.

  4. ما هي النقاط التي يمكن تحسينها في الدراسة؟

    يمكن تحسين الدراسة من خلال تضمين تجارب عملية ميدانية، استكشاف تقنيات تعديل أخرى، وتحليل تأثير العوامل البيئية المختلفة على أداء الرادارات.


References used
Merril I. Skolnik, “ Introduction to Radar System “, third edition, McGraw-Hill Higher Education, 2001
Bassem R.Mahafza and Azef Z.Elshebeni, “Matlab Simulations for Radar System Design”, CHAPMAN & HALL/CRC, 2004
Merril I. Skolnik, “Radar Handbook” , third edition,, McGraw-Hill, 2008
rate research

Read More

Speech denoising is a field of engineering that studies techniques used to recover the original signal from the noisy signal corrupted with different types of noise, such as broadband noise and narrowband noise, and other types present in environme nt, but the spectral subtraction technique consider the most prominent in this area . In this search we will discuss the parameters impact of the modified spectral subtraction algorithm and the time window length in the enhancement of speech that corrupted with broadband noise. We done the study and determine the ideal parameters values and the ideal window length with different values for the signal -to-noise ratio SNR for noisy speech and we discuss 18 case for each value. We done the simulation using MATLAB software and the results were compared based on improving the value of SNR for each case .
The normal Costas frequencies code sequence signal is very well known and important signal in pulse compression Radar. In this paper we present two algorithms to modify Costas sequence by arranging the frequencies of Costas signal in time, first usin g binary Costas array and second using Golomb Ruler. These methods enable us to control side-lobes and to improve Doppler frequency resolution of Ambiguity Function (AF). At first we present the principle of these methods Golomb Ruler and Costas array. Then we apply these two methods to normal Costas signal, modified Costas signal and step frequency modulation and calculate the AF for all. The results of comparison have shown that considerable reduction of side-lobes of AF is achieved by using these two methods, and consequently an improvement of AF is obtained.
This research evaluates the performance degradation of information channels in multifunction radar due to electronic countermeasures (standoff jamming) on main loop of radar antenna .This evaluation is performed by using the signal to noise ratio( SNR ) and the probability of detection parameters with and without jamming. Improvement of radar performance is proposed by using the following (ECCM) techniques :Constant False Alarm Rate( CFAR), Pulse compression (pc) , frequency agility (FA), Frequency Diversity(FD),Logarithmic Reception , and Automatic Gain Control(AGC). In this research MATLAB, software environment is used that has advanced mathematical tools, and graphical interactive ability.
Counterfactuals are a valuable means for understanding decisions made by ML systems. However, the counterfactuals generated by the methods currently available for natural language text are either unrealistic or introduce imperceptible changes. We pro pose CounterfactualGAN: a method that combines a conditional GAN and the embeddings of a pretrained BERT encoder to model-agnostically generate realistic natural language text counterfactuals for explaining regression and classification tasks. Experimental results show that our method produces perceptibly distinguishable counterfactuals, while outperforming four baseline methods on fidelity and human judgments of naturalness, across multiple datasets and multiple predictive models.
Abductive reasoning starts from some observations and aims at finding the most plausible explanation for these observations. To perform abduction, humans often make use of temporal and causal inferences, and knowledge about how some hypothetical situ ation can result in different outcomes. This work offers the first study of how such knowledge impacts the Abductive NLI task -- which consists in choosing the more likely explanation for given observations. We train a specialized language model LMI that is tasked to generate what could happen next from a hypothetical scenario that evolves from a given event. We then propose a multi-task model MTL to solve the Abductive NLI task, which predicts a plausible explanation by a) considering different possible events emerging from candidate hypotheses -- events generated by LMI -- and b) selecting the one that is most similar to the observed outcome. We show that our MTL model improves over prior vanilla pre-trained LMs fine-tuned on Abductive NLI. Our manual evaluation and analysis suggest that learning about possible next events from different hypothetical scenarios supports abductive inference.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا