يتعلق البحث بدراسة بعض الخواص للحلقات النظيفة و نصف النظيفة و شبه النظيفة
و ايجاد العلاقة بين هذه الحلقات. نقول عن حلقة ما إنها نظيفة إذا كان كل عنصر فيها
هو مجموع عنصرين أحدهما جامد و الآخر قابل للقلب, و نقول عن حلقة ما إنها نصف
نظيفة إذا كان كل عنصر فيها هو مجموع عنصرين أحدهما جامد و الآخر منتظم, نقول
عن حلقة ما إنها شبه نظيفة إذا كان كل عنصر فيها هو مجموع عنصرين أحدهما جامد
و الآخر pi عنصر.
The purpose of this paper is studying some properties of clean,
semi-clean and quasi-clean rings, and study the relationship between
these rings. A ring is called clean if each of its element is the sum of
an idempotent and a unit, a ring is called semi-clean if each of its
element is the sum of an idempotent and a regular, a ring is called
quasi-clean if each of its element is the sum of an idempotent and an
pi .
Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية دراسة خصائص الحلقات النظيفة، الحلقات نصف النظيفة، والحلقات شبه النظيفة، بالإضافة إلى العلاقات بينها. تُعرف الحلقة النظيفة بأنها الحلقة التي يمكن التعبير عن كل عنصر فيها كمجموع عنصر قابل للقلب وعنصر عديم القوى. الحلقة نصف النظيفة هي الحلقة التي يمكن التعبير عن كل عنصر فيها كمجموع عنصر قابل للقلب وعنصر منتظم. الحلقة شبه النظيفة هي الحلقة التي يمكن التعبير عن كل عنصر فيها كمجموع عنصر قابل للقلب وعنصر شبه قابل للقلب. تُثبت الورقة أن هذه المفاهيم متكافئة في الحلقات غير الصفرية التي تحتوي على عناصر عديمة القوى فقط. كما تتناول الورقة أمثلة على وجود مثل هذه الحلقات وتناقش متى تكون هذه الحلقات متطابقة في حالة وجود عناصر عديمة القوى بخلاف 0 و1. تتضمن النتائج التي توصلت إليها الورقة أن كل حلقة منتظمة ونظيفة هي حلقة نصف نظيفة، وأن الحلقة تكون محلية إذا وفقط إذا كانت نظيفة وتحتوي على العناصر {0,1}. كما تُثبت الورقة أن الحلقات النظيفة ونصف النظيفة وشبه النظيفة تكون متكافئة وتكافئ الحلقات المحلية في حالة وجود العناصر {0,1}. توصي الورقة بمتابعة دراسة الحلقات شبه النظيفة والعلاقة بينها وبين الحلقات الجامدة وشبه الجامدة.
Critical review
دراسة نقدية: تقدم الورقة البحثية دراسة شاملة ومفصلة حول الحلقات النظيفة وشبه النظيفة، وتتناول العديد من الجوانب النظرية لهذه الحلقات. ومع ذلك، يمكن أن تكون الورقة أكثر وضوحًا في بعض النقاط، مثل تقديم المزيد من الأمثلة التوضيحية لتسهيل فهم المفاهيم المعقدة. بالإضافة إلى ذلك، يمكن تعزيز الورقة بمزيد من التطبيقات العملية لهذه الحلقات في مجالات مختلفة من الرياضيات والعلوم. كما أن الورقة تفتقر إلى مناقشة بعض النتائج الحديثة في هذا المجال، والتي يمكن أن تضيف قيمة إضافية للبحث.
Questions related to the research
-
ما هي الحلقة النظيفة؟
الحلقة النظيفة هي الحلقة التي يمكن التعبير عن كل عنصر فيها كمجموع عنصر قابل للقلب وعنصر عديم القوى.
-
ما هي العلاقة بين الحلقات النظيفة والحلقات نصف النظيفة؟
كل حلقة نظيفة هي حلقة نصف نظيفة، حيث يمكن التعبير عن كل عنصر في الحلقة النظيفة كمجموع عنصر قابل للقلب وعنصر منتظم.
-
متى تكون الحلقة محلية؟
تكون الحلقة محلية إذا وفقط إذا كانت نظيفة وتحتوي على العناصر {0,1}.
-
ما هي التوصيات التي قدمتها الورقة البحثية؟
توصي الورقة بمتابعة دراسة الحلقات شبه النظيفة والعلاقة بينها وبين الحلقات الجامدة وشبه الجامدة.
References used
Jacobson, N 1956 Structure of Rings. Amer. Math. Soc. Coll. Publ
Goodearl, K.R, 1979 Von Neumann Regular Rings. Pitman, London
Kasch, F 1982 Modules and Rings. Academic Press, New York, p. 372
The concept of hereditary and semi-hereditary rings and
modules has grate effect in Theory of rings and modules, because
the relation between this concepts with Baer and Rickart rings and
modules.
For this reason, we generalize this concept by quasihereditary
rings.
In this paper, the characterization of right and left quasi-Frobenius
categories, has been given.
Let C be a small preadditive category, C* the dual category of C. It has
shown, that the following conditions are equivalent:
(i) C is right and lef
Let M and N be two modules over a ring R. The object of this paper is the study
of substructures of hom (M, N) R such as, radical, the singular, and co-singular
ideal and the total. The new obtained results include necessary and sufficient
conditi
Let R be a ring with identity.
The ain is to study some fundamental properties of a ring R when R is regular
or semi-potent and the radical Jacobson of R when R is semi-potent.
New results were obtained including necessary and sufficient condition
In this paper, We study the dual representation. We proved that if
p is completely redusibile, decomposable and unitary then p* is
completely redusibile, decomposable and unitary,