Do you want to publish a course? Click here

Building a feedforward neural network optimizer in Model Predictive Control Algorithm

بناء مؤمثل عصبوني أمامي لخوارزمية التحكم التنبؤي النموذجي

1314   0   113   0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This paper presents the possibility of replacing the mathematical optimizer in the Model Predictive Control Algorithm (MPC) with a Feedforward Neural Network Optimizer (FNNO). The optimizer trained offline to reduce the cost function. This maintain the system model of the system, which is essential in MPC to get accepted accuracy. we solve optimization problem faster than the algorithms of traditional optimization, which we built, based on digital computing.


Artificial intelligence review:
Research summary
يقدم هذا البحث إمكانية استبدال المؤمثل الرياضي في خوارزمية التحكم التنبؤي النموذجي (MPC) بمؤمثل عصبوني أمامي (FNNO). يتم تدريب المؤمثل العصبوني بشكل غير متصل (offline) لتقليل تابع الكلفة، مما يحافظ على نموذج النظام الذي يعد أساسياً في خوارزمية التحكم التنبؤي للحصول على الدقة المطلوبة. تم حل مسألة الأمثلة خلال زمن أسرع من زمن حلها عند استخدام خوارزميات الأمثلة التقليدية المعتمدة على الحوسبة الرقمية. تم تطبيق هذه التقنية على نظام محرك سيرفو باستخدام المحاكاة الحاسوبية، وأظهرت النتائج أن FNNO يمكنه تحقيق نفس أداء المؤمثل التقليدي مع تقليل كبير في زمن التنفيذ.
Critical review
دراسة نقدية: يعد البحث خطوة مهمة نحو تحسين أداء خوارزميات التحكم التنبؤي من خلال استخدام الشبكات العصبونية، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، لم يتم التطرق بشكل كافٍ إلى كيفية تأثير التشويش أو التغيرات الديناميكية في النظام على أداء FNNO. ثانياً، التركيز كان على نظام محرك سيرفو فقط، مما يحد من تعميم النتائج على أنظمة أخرى. ثالثاً، لم يتم مناقشة تكلفة التدريب غير المتصل (offline) للشبكة العصبونية بشكل مفصل، والذي قد يكون مكلفاً في بعض التطبيقات العملية. أخيراً، يفضل إجراء تجارب عملية بالإضافة إلى المحاكاة الحاسوبية للتحقق من فعالية FNNO في البيئات الحقيقية.
Questions related to the research
  1. ما هي الفائدة الرئيسية من استخدام FNNO بدلاً من المؤمثل التقليدي في خوارزمية التحكم التنبؤي؟

    الفائدة الرئيسية هي تقليل زمن التنفيذ بشكل كبير، حيث أن FNNO يمكنه حل مسألة الأمثلة بشكل أسرع من المؤمثل التقليدي المعتمد على الحوسبة الرقمية.

  2. ما هي الخطوات التي تم اتباعها لتدريب FNNO؟

    تم استخراج الإشارات الأساسية المؤثرة على دخل المؤمثل التقليدي في MPC، ثم تم تدريب الشبكة العصبونية على 2000 عينة من 10000 عينة من عينات النظام، واختبار الشبكة على العينات المتبقية.

  3. ما هي القيود التي تم مراعاتها في نظام محرك السيرفو أثناء استخدام FNNO؟

    تم مراعاة أن العزم والجهد لا يتجاوزان الحدود المسموحة لهما، حيث يجب ألا يتجاوز العزم قيمة 78.5NM وألا يتجاوز الجهد قيمة 220V.

  4. ما هي التوصيات التي قدمها الباحثون في نهاية البحث؟

    أوصى الباحثون بالاستعاضة عن FNNO بدارة تمثيلية لضمان سرعة كبيرة في إنجاز مهمة الأمثلة، وتطوير آلية FNNO في MPC لدراسة فعاليتها في الأنظمة اللاخطية مع وجود تشويش.


References used
Bernt M. A ˚ kesson, Hannu T. Toivonen,2006- " A Neural Network Model Predictive Controller" Journal of Process Control 16, 937–946
CAMACHO,E,2007- " Model Predictive Control. Springer, Second Edition," New York
Yunpeng Pan and Jun Wang,2008-" Two Neural Network Approaches to Model Predictive Control", American Control Conference, WeC13.5
rate research

Read More

This study aims to design a neural model for a linear or nonlinear systems by using an Evolutionary Programming algorithm (EP) to choose the optimal structural construction for the network. We have used Matlab to design Neural Networks using (EP), be cause of its flexibility and ability to represent matrices (Cell Arrays, Multi Dimension Arrays). The experimental results confirm the efficiency with which this algorithm (EP) obtains the optimal network. We have tested the algorithm performance and the resulting model robustness by canceling one of the hidden layer nodes of the best net resulting from applying (EP). The effectiveness of that canceling on the resulting model output is also tested, and this study has shown the efficiency of the algorithm (EP) for the class of systems used.
In this paper, an adaption mechanism for control signal weighting factor in Generalized Predictive Control (GPC) Technique has been build. This factor changes according to the amplitude of the measured disturbance affecting the acid influent in pH Neutralization process. The main purpose of this adaption is to reduce rigorousness and severity of the manipulated variable of alkaline flow actuator, which result in protecting the actuator from damage, so lengthen its life and shrinking the maintenance costs. The efficiency of the Adaption was observed by calculating the integral of the absolute value of the error (IAE) and the integral of absolute derivative signal (IADS) from simulation results.
This research designs web search engine kernel overrule in searching of specific fields and indexing indicated sites. This research contain information about search in web , retrieval system , types of search engines and basic architectures of bui lding search engines .It suggests search engine architecture kernel of dedicated search engine to do final planner of search engine architecture ,and build parts of search engine and execute test to get results .
We present on-going work of evaluating the, to our knowledge, first large generative language model trained to converse in Swedish, using data from the online discussion forum Flashback. We conduct a human evaluation pilot study that indicates the mo del is often able to respond to conversations in both a human-like and informative manner, on a diverse set of topics. While data from online forums can be useful to build conversational systems, we reflect on the negative consequences that incautious application might have, and the need for taking active measures to safeguard against them.
We propose a novel framework to train models to classify acceptability of responses generated by natural language generation (NLG) models, improving upon existing sentence transformation and model-based approaches. An NLG response is considered accep table if it is both semantically correct and grammatical. We don't make use of any human references making the classifiers suitable for runtime deployment. Training data for the classifiers is obtained using a 2-stage approach of first generating synthetic data using a combination of existing and new model-based approaches followed by a novel validation framework to filter and sort the synthetic data into acceptable and unacceptable classes. Our 2-stage approach adapts to a wide range of data representations and does not require additional data beyond what the NLG models are trained on. It is also independent of the underlying NLG model architecture, and is able to generate more realistic samples close to the distribution of the NLG model-generated responses. We present results on 5 datasets (WebNLG, Cleaned E2E, ViGGO, Alarm, and Weather) with varying data representations. We compare our framework with existing techniques that involve synthetic data generation using simple sentence transformations and/or model-based techniques, and show that building acceptability classifiers using data that resembles the generation model outputs followed by a validation framework outperforms the existing techniques, achieving state-of-the-art results. We also show that our techniques can be used in few-shot settings using self-training.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا