Do you want to publish a course? Click here

Using Evolutionary Programming Algorithm for Designing a Robust Neural Model for a Class of Control Systems

استخدام خوارزمية البرمجة التطورية لتصميم نموذج عصبوني صلد لفئة من نظم التحكم

2496   0   317   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This study aims to design a neural model for a linear or nonlinear systems by using an Evolutionary Programming algorithm (EP) to choose the optimal structural construction for the network. We have used Matlab to design Neural Networks using (EP), because of its flexibility and ability to represent matrices (Cell Arrays, Multi Dimension Arrays). The experimental results confirm the efficiency with which this algorithm (EP) obtains the optimal network. We have tested the algorithm performance and the resulting model robustness by canceling one of the hidden layer nodes of the best net resulting from applying (EP). The effectiveness of that canceling on the resulting model output is also tested, and this study has shown the efficiency of the algorithm (EP) for the class of systems used.


Artificial intelligence review:
Research summary
يهدف هذا البحث إلى تصميم نموذج عصبوني لفئة من النظم الخطية واللاخطية باستخدام خوارزمية البرمجة التطورية (EP) لاختيار التركيب البنيوي الأمثل للشبكة العصبونية. تم استخدام برنامج ماتلاب لتصميم الشبكات العصبونية باستخدام EP، نظرًا لمرونته وسهولة تمثيله للمصفوفات. أثبتت النتائج العملية كفاءة الخوارزمية في الوصول إلى شبكة عصبونية مثلى. تم اختبار أداء وصلادة النموذج الناتج عن طريق حذف إحدى عصبونات الطبقة المخفية للشبكة ودراسة تأثير هذا الحذف على خرج النموذج. أكدت الدراسة فعالية الخوارزمية بالنسبة لفئة النظم المستخدمة. تم تطبيق الخوارزمية على عدد من النظم اللاخطية، وأظهرت النتائج أن الخوارزمية قادرة على الوصول إلى تصميم أمثل للشبكة العصبونية. كما تم اختبار أداء الخوارزمية وصلادة النموذج الناتج عند حدوث خلل في إحدى عقد الشبكة. أظهرت النتائج أن الخوارزمية فعالة في تصميم الشبكات العصبونية المثلى لفئة النظم المدروسة، وأنها قادرة على تحديد العقدة التي تعرضت لخلل من خلال تحليل مجال الخطأ الناتج. توصي الدراسة بتطوير بنية الشبكة لطبقتين مخفيتين وتنفيذ التصميم على مستوى العتاد الصلب.
Critical review
دراسة نقدية: يعد البحث مساهمة قيمة في مجال تصميم الشبكات العصبونية باستخدام خوارزمية البرمجة التطورية، إلا أنه يواجه بعض التحديات. أولاً، لم يتم اختبار الخوارزمية على نطاق واسع من النظم الديناميكية المعقدة، مما يحد من تعميم النتائج. ثانيًا، قد تكون الحاجة إلى عدد كبير من العصبونات في الطبقة المخفية عائقًا أمام تطبيق الخوارزمية على أنظمة أكبر وأكثر تعقيدًا. ثالثًا، يمكن أن يكون هناك حاجة إلى تحسينات إضافية في بنية الشبكة لتحقيق أداء أفضل. على الرغم من هذه التحديات، فإن البحث يقدم أساسًا قويًا لتطوير خوارزميات أكثر كفاءة وفعالية في تصميم الشبكات العصبونية.
Questions related to the research
  1. ما هي الأهداف الرئيسية لهذا البحث؟

    يهدف البحث إلى تصميم نموذج عصبوني لفئة من النظم الخطية واللاخطية باستخدام خوارزمية البرمجة التطورية لاختيار التركيب البنيوي الأمثل للشبكة العصبونية.

  2. ما هي الأدوات المستخدمة في هذا البحث لتصميم الشبكات العصبونية؟

    تم استخدام برنامج ماتلاب لتصميم الشبكات العصبونية باستخدام خوارزمية البرمجة التطورية.

  3. كيف تم اختبار أداء وصلادة النموذج الناتج؟

    تم اختبار أداء وصلادة النموذج الناتج عن طريق حذف إحدى عصبونات الطبقة المخفية للشبكة ودراسة تأثير هذا الحذف على خرج النموذج.

  4. ما هي التوصيات التي قدمها البحث لتحسين أداء الشبكات العصبونية؟

    يوصي البحث بتطوير بنية الشبكة لطبقتين مخفيتين وتنفيذ التصميم على مستوى العتاد الصلب لتحسين أداء الشبكات العصبونية.


References used
CANGELOSI, A;ELMAN, J.L. Gene regulation and biological development in neural networks :an exploratory model. Technical Report, CRL-UCSD, University of California San Diego, 1995
HAYKIN, S. Neural Networks :A Comprehensive Foundation. 2nd, Ed, London, prentice-Hall, 1999
FUJITA, O. statistical estimation of the number of hidden units for feed forward neural networks. neural networks11(5), 1988, 851-859
MONTANA, D; DAVIS, L. Training feed forward neural networks using genetic algorithms. In: Proceedings of the 11th International Joint Conference on AI, Detroit, MI, 1989,762–767
KITANO, H. Designing neural networks using genetic algorithms with graph generation system.Complex Systems4(4), 1990, 461–476
rate research

Read More

This paper presents the possibility of replacing the mathematical optimizer in the Model Predictive Control Algorithm (MPC) with a Feedforward Neural Network Optimizer (FNNO). The optimizer trained offline to reduce the cost function. This maintai n the system model of the system, which is essential in MPC to get accepted accuracy. we solve optimization problem faster than the algorithms of traditional optimization, which we built, based on digital computing.
This research aims to achieve the observability of any electrical network by the possibility compensation the lost measurements due to a defect, allowing the possibility of state estimation of the electrical network ,ie, obtaining a single solution for a state estimation. This is done by means of the network observability analysing using the available set of measurements and adding virtual pseudo-measurements if the network is not observable. this is done using a numerical algorithm that ensures obtaining the minimum and optimal number of added critical pseudo-measurements so that the result of state estimation was not adversely affected. The algorithm depends on solving the equation of the linear state estimation and the analysing to the triangular factors of the gain matrix and an easy way to arrange the axis of the jacobian matrix ,ie, the measurements matrix to ensure getting the minimum set of candidate pseudo- measurements to be added to real measurements, the numerical algorithm was acheived by environment in the MATLAB and tested to present the results on the network observabilty analysing and adding the pseudo-measurements algorithm on state estimation .The results of the program were tested on IEEE-14 network, and they showed that if a number of measurements were lost, they would be compensated by critical and pseudo-measurements. The results of state estimation showed small error ratio between estimated values using the real measurements and the estimated values after added the critical pseudo-measurements.
The Quality of Service (QoS) term is refer to capability of network to prioritization and service distinguish for providing better service to some service classes and call types. Because of the lack of resources, from one side, and user's mobility from the other, provision of QoS guarantees is considered at the head of the challenges that wireless cellular mobile network systems face. Call Admission Control (CAC) is used for providing and achieving QoS guarantees in wireless systems. This paper proposes a new CAC algorithm with priority index for providing and achieving QoS guarantees on the call level in wireless systems in terms of new call blocking probabilities using multiple thresholds to determinate the number of acceptable new calls of each type of service. Results of simulation provided in this paper show that the application of proposed new CAC algorithm with priority index on the New Call Bounding Scheme (NCBS) provides a new CAC scheme which has better performance in terms of new call blocking Probabilities and guarantees any desired level of QoS for new call types with the keeping priority of handoff calls.
This paper presents the proposed Method for designing fuzzy supervisory controller model for Proportional Integral Differential controller (PID) by Fuzzy Reasoning Petri Net (FRPN),the Features of Method shows the fuzzification value for each prop erty of membership function for each input of fuzzy supervisory controller, and determine the total number of rules required in designing the controller before enter the appropriate rules in the design phase of the rules, and determine the value of the inputs of the rule that has been activated, and assembly variables that have the same property and show the value for each of them programmatically, and determine the deffuzification value using deffuzification methods.
In Artificial Intelligence field, Knowledge Engineering phase is considered the most crucial phase of the development life cycle of the Knowledge Base Systems [1]. In fact, Formal Logic in general and Modus Ponens specifically has been the dominan t tools for structuring this knowledge [3]. This led for forming a gap between the knowledge area and the information area, which depends structurally on the Set Theory in general and on the Relational Algebra in particular [1]. Thus, trying to introduce a bridge to pass this gap in structuring and treating knowledge, we have conducted a new knowledge representation model that depends structurally on (Classical and Fuzzy) Set Theory. Then we used it as the base for conducting an inference model that attempt, using a set of algebraic operations and by going through a series of stages, to reach a solution of the problem under study, in a manner very close to the one that humans usually use in treating their knowledge, taking into consideration the speed and accuracy as much as the problem allows.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا