يتضمن هذا البحث بناء نواة محرك بحث يمكنه العمل ضمن شبكة الانترنت , قادر على التحكم بالبحث عن معلومات بمجالات محددة و فهرسة مواقع معينة .
تم في هذا البحث دراسة مسألة البحث عن المعلومات عبر الانترنيت و نظم استرجاع المعلومات و أنواع محركات البحث و المعماريات الأساسية لبناء المحركات و من ثم اقتراح معمارية محرك بحث يصلح نواة لمحرك البحث المرغوب و تحديد المخطط النهائي لمعمارية محرك البحث حيث تم بناء مقاطع محرك البحث و إجراء الاختبارات و النتائج.
This research designs web search engine kernel overrule in searching of specific
fields and indexing indicated sites.
This research contain information about search in web , retrieval system , types of
search engines and basic architectures of building search engines .It suggests search engine
architecture kernel of dedicated search engine to do final planner of search engine
architecture ,and build parts of search engine and execute test to get results .
Artificial intelligence review:
Research summary
يتناول هذا البحث بناء نواة محرك بحث يمكنه العمل ضمن شبكة الإنترنت، مع القدرة على التحكم في البحث عن معلومات في مجالات محددة وفهرسة مواقع معينة. يتضمن البحث دراسة نظم استرجاع المعلومات، أنواع محركات البحث، والمعماريات الأساسية لبناء المحركات. تم اقتراح معمارية لمحرك بحث يصلح كنواة لمحرك بحث متخصص، وتم تحديد المخطط النهائي للمعمارية وبناء مقاطع المحرك وإجراء الاختبارات للحصول على النتائج. يتناول البحث أيضاً كيفية بناء العنكبوت، المفهرس، والاسترجاع، بالإضافة إلى تحليل النظام باستخدام لغة UML. تم تقييم أداء المحرك باستخدام مقاييس الاستدعاء، الدقة، الحداثة، والتكلفة، وتمت مقارنة النتائج مع دراسات سابقة. خلص البحث إلى أن المحرك المقترح يمكن أن يكون منصة لبناء محرك بحث منافس لمحركات البحث العالمية، مع مميزات التحكم في حجب الروابط والكلمات غير المرغوبة.
Critical review
دراسة نقدية: يتميز البحث بتقديمه لحل تقني مبتكر لبناء نواة محرك بحث متخصص، مع التركيز على التفاصيل التقنية والمعمارية. ومع ذلك، يمكن ملاحظة بعض النقاط التي قد تحتاج إلى تحسين. أولاً، لم يتم التطرق بشكل كافٍ إلى التحديات التي قد تواجه تنفيذ المحرك في بيئات حقيقية معقدة. ثانياً، قد يكون من المفيد تضمين دراسات حالة عملية لتوضيح كيفية تطبيق المحرك في مجالات مختلفة. ثالثاً، يمكن تعزيز البحث بمزيد من التحليلات المقارنة مع محركات البحث الحالية لتوضيح الفروقات والميزات التنافسية بشكل أوضح. وأخيراً، قد يكون من المفيد تضمين توصيات لتحسين الأداء وتوسيع نطاق الاستخدام.
Questions related to the research
-
ما هو الهدف الرئيسي من بناء نواة محرك البحث في هذا البحث؟
الهدف الرئيسي هو بناء نواة محرك بحث نصي متخصص يمكنه التحكم في البحث عن معلومات في مجالات محددة وفهرسة مواقع معينة، مع القدرة على حجب الروابط والكلمات غير المرغوبة.
-
ما هي المكونات الأساسية لمحرك البحث المقترح في البحث؟
المكونات الأساسية تشمل العنكبوت، المفهرس، ونظام الاسترجاع.
-
كيف تم تقييم أداء محرك البحث المقترح؟
تم تقييم الأداء باستخدام مقاييس الاستدعاء، الدقة، الحداثة، والتكلفة، وتمت مقارنة النتائج مع دراسات سابقة.
-
ما هي المميزات التنافسية لمحرك البحث المقترح مقارنة بمحركات البحث الحالية؟
المميزات التنافسية تشمل القدرة على التحكم في حجب الروابط والكلمات غير المرغوبة، بالإضافة إلى تخصيص البحث في مجالات محددة واسترجاع أحدث النسخ من المعلومات المطلوبة.
References used
GREHAN,M. How Search Engines Work, Incisive Media , New York,2002,275
KENT,P. Search Engine Optimization.5th.ed., John Wiley & Sons , London ,2012 ,456
MENG,W. Metasearch Engines, Binghamton University, New York, 2008,302
The basics of sEO, create unique page titles, improve the website structure, improve the content, dealing with crawlers, improve SEO for mobile devices, using analytics and promotional operating
Although there are many studies on neural language generation (NLG), few trials are put into the real world, especially in the advertising domain. Generating ads with NLG models can help copywriters in their creation. However, few studies have adequa
Recognizing named entities in short search engine queries is a difficult task due to their weaker contextual information compared to long sentences. Standard named entity recognition (NER) systems that are trained on grammatically correct and long se
Word embedding techniques depend heavily on the frequencies of words in the corpus, and are negatively impacted by failures in providing reliable representations for low-frequency words or unseen words during training. To address this problem, we pro
The current recipe for better model performance within NLP is to increase model size and training data. While it gives us models with increasingly impressive results, it also makes it more difficult to train and deploy state-of-the-art models for NLP