Do you want to publish a course? Click here

Building a kernel of Search Engine overrule in search and indexing

بناء نواة محرك بحث قادر على التحكم بالبحث و فهرسة المواقع

1124   0   36   0 ( 0 )
 Publication date 2015
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This research designs web search engine kernel overrule in searching of specific fields and indexing indicated sites. This research contain information about search in web , retrieval system , types of search engines and basic architectures of building search engines .It suggests search engine architecture kernel of dedicated search engine to do final planner of search engine architecture ,and build parts of search engine and execute test to get results .


Artificial intelligence review:
Research summary
يتناول هذا البحث بناء نواة محرك بحث يمكنه العمل ضمن شبكة الإنترنت، مع القدرة على التحكم في البحث عن معلومات في مجالات محددة وفهرسة مواقع معينة. يتضمن البحث دراسة نظم استرجاع المعلومات، أنواع محركات البحث، والمعماريات الأساسية لبناء المحركات. تم اقتراح معمارية لمحرك بحث يصلح كنواة لمحرك بحث متخصص، وتم تحديد المخطط النهائي للمعمارية وبناء مقاطع المحرك وإجراء الاختبارات للحصول على النتائج. يتناول البحث أيضاً كيفية بناء العنكبوت، المفهرس، والاسترجاع، بالإضافة إلى تحليل النظام باستخدام لغة UML. تم تقييم أداء المحرك باستخدام مقاييس الاستدعاء، الدقة، الحداثة، والتكلفة، وتمت مقارنة النتائج مع دراسات سابقة. خلص البحث إلى أن المحرك المقترح يمكن أن يكون منصة لبناء محرك بحث منافس لمحركات البحث العالمية، مع مميزات التحكم في حجب الروابط والكلمات غير المرغوبة.
Critical review
دراسة نقدية: يتميز البحث بتقديمه لحل تقني مبتكر لبناء نواة محرك بحث متخصص، مع التركيز على التفاصيل التقنية والمعمارية. ومع ذلك، يمكن ملاحظة بعض النقاط التي قد تحتاج إلى تحسين. أولاً، لم يتم التطرق بشكل كافٍ إلى التحديات التي قد تواجه تنفيذ المحرك في بيئات حقيقية معقدة. ثانياً، قد يكون من المفيد تضمين دراسات حالة عملية لتوضيح كيفية تطبيق المحرك في مجالات مختلفة. ثالثاً، يمكن تعزيز البحث بمزيد من التحليلات المقارنة مع محركات البحث الحالية لتوضيح الفروقات والميزات التنافسية بشكل أوضح. وأخيراً، قد يكون من المفيد تضمين توصيات لتحسين الأداء وتوسيع نطاق الاستخدام.
Questions related to the research
  1. ما هو الهدف الرئيسي من بناء نواة محرك البحث في هذا البحث؟

    الهدف الرئيسي هو بناء نواة محرك بحث نصي متخصص يمكنه التحكم في البحث عن معلومات في مجالات محددة وفهرسة مواقع معينة، مع القدرة على حجب الروابط والكلمات غير المرغوبة.

  2. ما هي المكونات الأساسية لمحرك البحث المقترح في البحث؟

    المكونات الأساسية تشمل العنكبوت، المفهرس، ونظام الاسترجاع.

  3. كيف تم تقييم أداء محرك البحث المقترح؟

    تم تقييم الأداء باستخدام مقاييس الاستدعاء، الدقة، الحداثة، والتكلفة، وتمت مقارنة النتائج مع دراسات سابقة.

  4. ما هي المميزات التنافسية لمحرك البحث المقترح مقارنة بمحركات البحث الحالية؟

    المميزات التنافسية تشمل القدرة على التحكم في حجب الروابط والكلمات غير المرغوبة، بالإضافة إلى تخصيص البحث في مجالات محددة واسترجاع أحدث النسخ من المعلومات المطلوبة.


References used
GREHAN,M. How Search Engines Work, Incisive Media , New York,2002,275
KENT,P. Search Engine Optimization.5th.ed., John Wiley & Sons , London ,2012 ,456
MENG,W. Metasearch Engines, Binghamton University, New York, 2008,302
rate research

Read More

1519 - Google 2015 كتاب
The basics of sEO, create unique page titles, improve the website structure, improve the content, dealing with crawlers, improve SEO for mobile devices, using analytics and promotional operating
Although there are many studies on neural language generation (NLG), few trials are put into the real world, especially in the advertising domain. Generating ads with NLG models can help copywriters in their creation. However, few studies have adequa tely evaluated the effect of generated ads with actual serving included because it requires a large amount of training data and a particular environment. In this paper, we demonstrate a practical use case of generating ad-text with an NLG model. Specially, we show how to improve the ads' impact, deploy models to a product, and evaluate the generated ads.
Recognizing named entities in short search engine queries is a difficult task due to their weaker contextual information compared to long sentences. Standard named entity recognition (NER) systems that are trained on grammatically correct and long se ntences fail to perform well on such queries. In this study, we share our efforts towards creating a cleaned and labeled dataset of real Turkish search engine queries (TR-SEQ) and introduce an extended label set to satisfy the search engine needs. A NER system is trained by applying the state-of-the-art deep learning method BERT to the collected data and its high performance on search engine queries is reported. Moreover, we compare our results with the state-of-the-art Turkish NER systems.
Word embedding techniques depend heavily on the frequencies of words in the corpus, and are negatively impacted by failures in providing reliable representations for low-frequency words or unseen words during training. To address this problem, we pro pose an algorithm to learn embeddings for rare words based on an Internet search engine and the spatial location relationships. Our algorithm proceeds in two steps. We firstly retrieve webpages corresponding to the rare word through the search engine and parse the returned results to extract a set of most related words. We average the vectors of the related words as the initial vector of the rare word. Then, the location of the rare word in the vector space is iteratively fine-tuned according to the order of its relevances to the related words. Compared to other approaches, our algorithm can learn more accurate representations for a wider range of vocabulary. We evaluate our learned rare-word embeddings on the word relatedness task, and the experimental results show that our algorithm achieves state-of-the-art performance.
The current recipe for better model performance within NLP is to increase model size and training data. While it gives us models with increasingly impressive results, it also makes it more difficult to train and deploy state-of-the-art models for NLP due to increasing computational costs. Model compression is a field of research that aims to alleviate this problem. The field encompasses different methods that aim to preserve the performance of a model while decreasing the size of it. One such method is knowledge distillation. In this article, we investigate the effect of knowledge distillation for named entity recognition models in Swedish. We show that while some sequence tagging models benefit from knowledge distillation, not all models do. This prompts us to ask questions about in which situations and for which models knowledge distillation is beneficial. We also reason about the effect of knowledge distillation on computational costs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا