Do you want to publish a course? Click here

Hierarchical Failure detectors implementation using dual mode of heartbeat and interaction

تحقيق كاشف الأعطال الهرمي باستخدام النموذج المشترك النبضي و التفاعلي

1025   0   7   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we propose an implementation of hierarchical failure detectors, which depends on dividing the processes into sub-groups and elect one leader called the main process . The main process then distributes the remaining processes into groups and chooses one leader for each one. Finally failure detector applied in the chosen leaders which send the results to the central process.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية موضوع كاشف الأعطال في الأنظمة الموزعة، حيث تلعب هذه الكواشف دوراً مركزياً في ضمان جودة الخدمة وتوفير معلومات دقيقة حول فشل العمليات. تقترح الورقة تطبيقاً لكاشف الأعطال ذو بنية هرمية يعتمد على تقسيم العمليات إلى مجموعات فرعية واختيار قادة لهذه المجموعات، مما يسهم في تقليل الضغط على الشبكة وزيادة سرعة الكشف عن الأعطال. تم استخدام نموذجين للكشف عن الأعطال: النموذج النبضي المتكيف والنموذج المشترك المتكيف. أظهرت النتائج أن البنية الهرمية تحقق أداءً أفضل من البنية التقليدية، خاصة في الأنظمة الموزعة الكبيرة والمعقدة. تم تنفيذ التجارب باستخدام لغة Java وتم تحليل النتائج باستخدام أداة Gnuplot.
Critical review
دراسة نقدية: تقدم الورقة حلاً مبتكراً لمشكلة كشف الأعطال في الأنظمة الموزعة باستخدام بنية هرمية، وهو ما يعتبر خطوة مهمة نحو تحسين جودة الخدمة وتقليل زمن الكشف عن الأعطال. ومع ذلك، يمكن توجيه بعض النقد البناء للورقة. أولاً، لم يتم التطرق بشكل كافٍ إلى التحديات العملية التي قد تواجه تنفيذ هذا النظام في بيئات حقيقية، مثل تأثير فقدان الرسائل أو التأخير في الشبكات الكبيرة. ثانياً، كان من الممكن تقديم مقارنة أكثر تفصيلاً بين الأداء في البيئات المختلفة لتوضيح مدى فعالية النموذج المقترح في ظروف متنوعة. أخيراً، يمكن أن تكون الورقة أكثر شمولية إذا تضمنت دراسة لتكاليف التنفيذ والموارد المطلوبة لتطبيق هذا النظام في بيئات حقيقية.
Questions related to the research
  1. ما هو الهدف الرئيسي من استخدام كاشف الأعطال في الأنظمة الموزعة؟

    الهدف الرئيسي هو توفير معلومات دقيقة حول فشل العمليات لضمان جودة الخدمة وتحسين التسامح مع الأخطاء في الأنظمة الموزعة.

  2. ما هي الفائدة من استخدام بنية هرمية في كاشف الأعطال؟

    البنية الهرمية تساعد في تقليل الضغط على الشبكة وزيادة سرعة الكشف عن الأعطال من خلال تقسيم العمليات إلى مجموعات فرعية واختيار قادة لهذه المجموعات.

  3. ما هي النماذج المستخدمة في هذه الدراسة لكشف الأعطال؟

    تم استخدام نموذجين: النموذج النبضي المتكيف والنموذج المشترك المتكيف.

  4. ما هي اللغة البرمجية والأدوات المستخدمة في تنفيذ التجارب وتحليل النتائج؟

    تم استخدام لغة Java لتنفيذ التجارب وأداة Gnuplot لتحليل النتائج ورسم المخططات.


References used
T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems,” Journal of the ACM, vol. 43,no. 2, pp. 225-267, 1996
S. Bansal, S. Sharma, and I. Trivedi, “Adaptive staircase multiple failure detector for parallel and distributed image processing” in Proceedings of the 1st International Conference on Recent Advances in Information Technology,Dhanbad,India, 2012, pp. 91-94
W. Chen, S. Toueg, and M. K. Aguilera, “On the quality of service of failure detectors,” IEEE Transactions on Computers, vol. 51, no. 5, pp. 561-580, 2002
rate research

Read More

Failure detection plays a central role in the engineering of distributed systems. Furthermore, many applications have timing constraints and require failure detectors that provide quality of service (QoS) with some quantitative timeliness guarante es. Therefore, they need failure detectors that are fast and accurate. Failure detectors are oracles that provide information about process crashes , they are an important abstraction for fault tolerance in distributed systems. Although current failure detectors theory provides great generality and expressiveness, it also possess significant challenges in developing a robust hierarchy of failure detectors. In this paper, we propose an implementation of failure detectors. this implementation uses a dual model of heartbeat and interaction. First, the heartbeat model is adopted to shorten the detection time. if the detecting process does not receive the heartbeat message in the expected time, the interaction model is then used to check the process further.
We consider the hierarchical representation of documents as graphs and use geometric deep learning to classify them into different categories. While graph neural networks can efficiently handle the variable structure of hierarchical documents using t he permutation invariant message passing operations, we show that we can gain extra performance improvements using our proposed selective graph pooling operation that arises from the fact that some parts of the hierarchy are invariable across different documents. We applied our model to classify clinical trial (CT) protocols into completed and terminated categories. We use bag-of-words based, as well as pre-trained transformer-based embeddings to featurize the graph nodes, achieving f1-scoresaround 0.85 on a publicly available large scale CT registry of around 360K protocols. We further demonstrate how the selective pooling can add insights into the CT termination status prediction. We make the source code and dataset splits accessible.
Failure Mode and Effects Analysis (FMEA) is a risk assessment tool that explores, identifies, and prioritizes the potential failure modes in a system, process, service or design. The failure modes prioritizing technique used by FMEA has been criticized to have many deficiencies, and various risk priority models have been proposed in the literature to enhance the performance of FMEA.
While natural language understanding of long-form documents remains an open challenge, such documents often contain structural information that can inform the design of models encoding them. Movie scripts are an example of such richly structured text -- scripts are segmented into scenes, which decompose into dialogue and descriptive components. In this work, we propose a neural architecture to encode this structure, which performs robustly on two multi-label tag classification tasks without using handcrafted features. We add a layer of insight by augmenting the encoder with an unsupervised interpretability' module, which can be used to extract and visualize narrative trajectories. Though this work specifically tackles screenplays, we discuss how the underlying approach can be generalized to a range of structured documents.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا