Do you want to publish a course? Click here

Hierarchical Encoders for Modeling and Interpreting Screenplays

الترميز الهرمي للنمذجة وتفسير screenplays

311   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

While natural language understanding of long-form documents remains an open challenge, such documents often contain structural information that can inform the design of models encoding them. Movie scripts are an example of such richly structured text -- scripts are segmented into scenes, which decompose into dialogue and descriptive components. In this work, we propose a neural architecture to encode this structure, which performs robustly on two multi-label tag classification tasks without using handcrafted features. We add a layer of insight by augmenting the encoder with an unsupervised interpretability' module, which can be used to extract and visualize narrative trajectories. Though this work specifically tackles screenplays, we discuss how the underlying approach can be generalized to a range of structured documents.



References used
https://aclanthology.org/
rate research

Read More

As hate speech spreads on social media and online communities, research continues to work on its automatic detection. Recently, recognition performance has been increasing thanks to advances in deep learning and the integration of user features. This work investigates the effects that such features can have on a detection model. Unlike previous research, we show that simple performance comparison does not expose the full impact of including contextual- and user information. By leveraging explainability techniques, we show (1) that user features play a role in the model's decision and (2) how they affect the feature space learned by the model. Besides revealing that---and also illustrating why---user features are the reason for performance gains, we show how such techniques can be combined to better understand the model and to detect unintended bias.
Human conversations naturally evolve around different topics and fluently move between them. In research on dialog systems, the ability to actively and smoothly transition to new topics is often ignored. In this paper we introduce TIAGE, a new topic- shift aware dialog benchmark constructed utilizing human annotations on topic shifts. Based on TIAGE, we introduce three tasks to investigate different scenarios of topic-shift modeling in dialog settings: topic-shift detection, topic-shift triggered response generation and topic-aware dialog generation. Experiments on these tasks show that the topic-shift signals in TIAGE are useful for topic-shift response generation. On the other hand, dialog systems still struggle to decide when to change topic. This indicates further research is needed in topic-shift aware dialog modeling.
State-of-the-art approaches to spelling error correction problem include Transformer-based Seq2Seq models, which require large training sets and suffer from slow inference time; and sequence labeling models based on Transformer encoders like BERT, wh ich involve token-level label space and therefore a large pre-defined vocabulary dictionary. In this paper we present a Hierarchical Character Tagger model, or HCTagger, for short text spelling error correction. We use a pre-trained language model at the character level as a text encoder, and then predict character-level edits to transform the original text into its error-free form with a much smaller label space. For decoding, we propose a hierarchical multi-task approach to alleviate the issue of long-tail label distribution without introducing extra model parameters. Experiments on two public misspelling correction datasets demonstrate that HCTagger is an accurate and much faster approach than many existing models.
Recent metaphor identification approaches mainly consider the contextual text features within a sentence or introduce external linguistic features to the model. But they usually ignore the extra information that the data can provide, such as the cont extual metaphor information and broader discourse information. In this paper, we propose a model augmented with hierarchical contextualized representation to extract more information from both sentence-level and discourse-level. At the sentence level, we leverage the metaphor information of words that except the target word in the sentence to strengthen the reasoning ability of our model via a novel label-enhanced contextualized representation. At the discourse level, the position-aware global memory network is adopted to learn long-range dependency among the same words within a discourse. Finally, our model combines the representations obtained from these two parts. The experiment results on two tasks of the VUA dataset show that our model outperforms every other state-of-the-art method that also does not use any external knowledge except what the pre-trained language model contains.
Short text classification is a fundamental task in natural language processing. It is hard due to the lack of context information and labeled data in practice. In this paper, we propose a new method called SHINE, which is based on graph neural networ k (GNN), for short text classification. First, we model the short text dataset as a hierarchical heterogeneous graph consisting of word-level component graphs which introduce more semantic and syntactic information. Then, we dynamically learn a short document graph that facilitates effective label propagation among similar short texts. Thus, comparing with existing GNN-based methods, SHINE can better exploit interactions between nodes of the same types and capture similarities between short texts. Extensive experiments on various benchmark short text datasets show that SHINE consistently outperforms state-of-the-art methods, especially with fewer labels.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا