أدت مرونة عملية الاستدلال في السيارات الآلية التلقائية (VAES) مؤخرا إلى مراجعة نماذج الموضوعات الاحتمالية التقليدية مما يؤدي إلى نماذج موضوع عصبي (NTM). على الرغم من أن هذه الأساليب حققت نتائج مهمة، فقد تم فعل القليل من العمل بشكل مدهش حول كيفية تفكيك المواضيع الكامنة. قد يؤدي نماذج الموضوعات الموجودة عند تطبيقها إلى المراجعات إلى استخراج الموضوعات المرتبطة بآراء الكتاب الذاتية المختلطة مع تلك المتعلقة بأوصاف واقعية مثل ملخصات المؤامرة في مراجعات الأفلام والحجز. وبالتالي، من المستحسن فصل مواضيع الرأي تلقائيا من المؤامرة / تلك المحايدة مما يتيح إمكانية الترجمة الترجمة الترجمة في هذه الورقة، نقترح نموذج موضوع عصبي جنبا إلى جنب مع التدريب الخصم لتخفيف موضوعات الرأي من المؤامرة والمحايدين. نقوم بإجراء تقييم تجريبي شامل يقدم مجموعة جديدة من مراجعات الأفلام والحجز المقترفة بأقطارها، وهي بيانات موبو، التي تظهر تماسك محسنة ومجموعة متنوعة من الموضوعات، وهو معدل تحسس متسق، وأداء تصنيف المعنويات متفوقة على نماذج موضوع أخرى تحت إشراف.
The flexibility of the inference process in Variational Autoencoders (VAEs) has recently led to revising traditional probabilistic topic models giving rise to Neural Topic Models (NTM). Although these approaches have achieved significant results, surprisingly very little work has been done on how to disentangle the latent topics. Existing topic models when applied to reviews may extract topics associated with writers' subjective opinions mixed with those related to factual descriptions such as plot summaries in movie and book reviews. It is thus desirable to automatically separate opinion topics from plot/neutral ones enabling a better interpretability. In this paper, we propose a neural topic model combined with adversarial training to disentangle opinion topics from plot and neutral ones. We conduct an extensive experimental assessment introducing a new collection of movie and book reviews paired with their plots, namely MOBO dataset, showing an improved coherence and variety of topics, a consistent disentanglement rate, and sentiment classification performance superior to other supervised topic models.
References used
https://aclanthology.org/
Customer reviews are useful in providing an indirect, secondhand experience of a product. People often use reviews written by other customers as a guideline prior to purchasing a product. Such behavior signifies the authenticity of reviews in e-comme
In this paper, we propose a globally normalized model for context-free grammar (CFG)-based semantic parsing. Instead of predicting a probability, our model predicts a real-valued score at each step and does not suffer from the label bias problem. Exp
This work investigates neural machine translation (NMT) systems for translating English user reviews into Croatian and Serbian, two similar morphologically complex languages. Two types of reviews are used for testing the systems: IMDb movie reviews a
This paper describes the model built for the SIGTYP 2021 Shared Task aimed at identifying 18 typologically different languages from speech recordings. Mel-frequency cepstral coefficients derived from audio files are transformed into spectrograms, whi
We bring the data from the social networking site Twitter
pages, and then we have worked on cleaning and processing
operation to the text of for the classification process texts retrieved
contain a lot of noise and information is useful for the pr