تركز بحثنا في هذه المقالة على دراسة طريقتي ADM – VIM و استخداميما لحل
بعض النماذج الهامة من المعادلات التفاضلية الجزئية الخطية و غير الخطية مثل (
معادلة كلاين غوردن غير الخطية – معادلة الموجة غير الخطية – معادلة التلغراف
الخطية – معادلة انتشار الحرارة غير الخطية )، و قد حصلنا على الحل الفعلي للمسائل
المدروسة من أجل تكرارات متعددة، و قمنا بإجراء دراسة عددية عند تكرار محدد ثم قارنا
الطريقتين السابقتين مع الحل الفعلي أثناء حلنا لمعادلة التلغراف و معادلة الحرارة غير
الخطية، و أيضا أجرينا مقارنة بين الحل الفعلي و الحل بطريقة ADM (من أجل تكرار
محدد ) لمعادلة كلاين غوردن غير الخطية، ثم قارنا بين الحل الفعلي و الحل بطريقة VIM
لمعادلة الموجة غير الخطية، و في جميع الحالات حصلنا على نتائج دقيقة و فعالة أثبتت
دقة و قوة و فعالية الطريقتين المدروستين .
In this article, powerful approximate analytical
methods, called Adomian decomposition method and
variational iteration method are introduced and applied to
obtaining the approximate analytical solutions for an
important models of linear and non-linear partial differential
equations such as ( nonlinear Klein Gordon equation -
nonlinear wave equation - linear telegraph equation -
nonlinear diffusion convection equation ) .
The studied examples are used to reveal that those methods are
very effective and convenient for solving linear and nonlinear
partial differential equations .
Numerical results and comparisons with the exact solution are
included to show validity, ability, accuracy, strength and
effectiveness of those techniques.
Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية دراسة طريقتين تحليلية تقريبية هما طريقة التحليل الأدومي (ADM) وطريقة التكرار التغايري (VIM) لحل بعض النماذج الهامة من المعادلات التفاضلية الجزئية الخطية وغير الخطية. تشمل هذه النماذج معادلة كلاين غوردن غير الخطية، معادلة الموجة غير الخطية، معادلة التلغراف الخطية، ومعادلة انتشار الحرارة غير الخطية. تم الحصول على الحلول الفعلية للمسائل المدروسة باستخدام تكرارات متعددة، وتم إجراء دراسة عددية عند تكرار محدد ومقارنة النتائج مع الحل الفعلي. أظهرت النتائج دقة وفعالية الطريقتين في حل المعادلات التفاضلية الجزئية، حيث تم إثبات قوة وفعالية الطريقتين من خلال النتائج العددية والمقارنات مع الحلول الفعلية.
Critical review
دراسة نقدية: تعد الورقة البحثية قيمة في مجال حل المعادلات التفاضلية الجزئية باستخدام الطرائق التحليلية التقريبية. ومع ذلك، يمكن تقديم بعض الملاحظات النقدية لتحسين البحث. أولاً، كان من الممكن تقديم تحليل أعمق للقيود والمحددات الخاصة بكل طريقة من الطريقتين المدروستين (ADM وVIM). ثانياً، كان من المفيد تضمين مقارنة مع طرائق أخرى لحل المعادلات التفاضلية الجزئية لتوضيح مدى تفوق الطريقتين المدروستين. أخيراً، كان من الممكن تحسين العرض البياني للنتائج بتقديم المزيد من الرسوم البيانية التوضيحية والشرح المفصل لكل حالة.
Questions related to the research
-
ما هي الطرائق التحليلية التقريبية المستخدمة في هذه الورقة البحثية؟
الطرائق التحليلية التقريبية المستخدمة هي طريقة التحليل الأدومي (ADM) وطريقة التكرار التغايري (VIM).
-
ما هي النماذج الهامة من المعادلات التفاضلية الجزئية التي تم دراستها في هذه الورقة؟
النماذج الهامة التي تم دراستها تشمل معادلة كلاين غوردن غير الخطية، معادلة الموجة غير الخطية، معادلة التلغراف الخطية، ومعادلة انتشار الحرارة غير الخطية.
-
ما هي النتائج التي توصلت إليها الدراسة بخصوص فعالية الطريقتين ADM وVIM؟
أظهرت النتائج أن الطريقتين ADM وVIM فعالتان ودقيقتان في حل المعادلات التفاضلية الجزئية، حيث تم الحصول على نتائج دقيقة وفعالة أثبتت دقة وقوة وفعالية الطريقتين.
-
هل تم مقارنة الطريقتين مع الحلول الفعلية للمسائل المدروسة؟
نعم، تم مقارنة الطريقتين مع الحلول الفعلية للمسائل المدروسة، وأظهرت النتائج تقارب الحلول العددية مع الحلول الفعلية بشكل كبير.
References used
ABASSY ,T 2012 - Modified variational iteration method (non-homogeneous initial value problem) . Mathematical and Computer Modelling . Vol .55, 1222-1232p
ABDELRAZEC , A.H.M . 2008 - Adomian Decomposition Method : Convergence Analysis and Numerical Approximations . McMaster University , Canada , 58p
ALAO ,S ., AKINBORO , F. S.,AKINPELU , F.O. & ODERINU ,R .A. 2014 - Numerical Solution of Integro- Differential Equation Using Adomian Decomposition and Variational Iteration Methods . IOSR Journal of Mathematics . Vol . 10 , 18-22p
In this work, we present programming solutions for some nonlinear partial differential equations, which are the advection equation, the third-order KdV
equations, and a family of Burgers' equations.
In this article, we propose a powerful method called
homotopy perturbation method (HPM) for obtaining the
analytical solutions for an non-linear system of partial
differential equations. We begin this article by apply HPM
method for an important models of linear and non-linear
partial differential equations.
In this paper, spline approximations with five collocation points are used for the
numerical simulation of stochastic of differential equations(SDE). First, we have modeled
continuous-valued discrete wiener process, and then numerical asymptotic st
In this paper, the numerical solution of general linear fifth-order boundary-value problem (BVP) is considered. This problem is transformed into three initial value problems (IVPs) and then spline functions with four collocation points are applied to
In this work , The fifth order non-polynomial spline functions is
used to solve linear volterra integral equations with weakly
singular kernel .
Numerical examples are presented to illustrate the applications
of this method and to compare the computed results with
other numerical methods.