Do you want to publish a course? Click here

Generalized Right Bear Rings

حلقـات بيـر المعممـة

1199   0   5   0 ( 0 )
 Publication date 2005
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The object of this paper is to study the relationship between certain ring R and endomorphism rings of free modules over R. Specifically, the basic problem is to describe ring R, which is endomorphism ring of all free Rmodule, as a generalized right Bear ring. Call a ring R a generalized right Bear ring if any right annihilator contains a nonzero idempotent. A structure theorem is obtained: endomorphism ring of a free module F is a generalized right Bear ring if and only if every closed submodule of F contains a direct summand of F. It is shown that every torsionless R-module contains a projective R-module if endomorphism ring of any free R-module is a generalized right Bear ring.


Artificial intelligence review:
Research summary
تهدف هذه الورقة إلى دراسة العلاقة بين حلقة معينة R وحلقات التشاكل للوحدات الحرة فوق R. تتمثل المشكلة الأساسية في وصف الحلقة R، التي هي حلقة التشاكل لجميع الوحدات الحرة على R، كحلقة بير عامة من الجهة اليمنى. تُسمى الحلقة R حلقة بير عامة من الجهة اليمنى إذا كان أي مُبيد أيمن يحتوي على عنصر مُبيد غير صفري. تم الحصول على نظرية هيكلية: تكون حلقة التشاكل لوحدة حرة F حلقة بير عامة من الجهة اليمنى إذا وفقط إذا كانت كل وحدة فرعية مغلقة من F تحتوي على مُلحق مباشر من F. كما تم إثبات أن كل وحدة R خالية من الالتواء تحتوي على وحدة R إسقاطية إذا كانت حلقة التشاكل لأي وحدة R حرة هي حلقة بير عامة من الجهة اليمنى.
Critical review
دراسة نقدية: تقدم هذه الورقة إسهامًا مهمًا في نظرية الحلقات والوحدات من خلال تقديم مفهوم جديد لحلقات بير العامة من الجهة اليمنى وربطها بحلقات التشاكل للوحدات الحرة. ومع ذلك، يمكن القول أن الورقة تفتقر إلى الأمثلة التطبيقية التي يمكن أن توضح الفائدة العملية لهذه النتائج النظرية. كما أن البرهان على بعض النتائج قد يكون معقدًا ويحتاج إلى توضيح أكثر لتسهيل الفهم على القراء غير المتخصصين. بالإضافة إلى ذلك، قد يكون من المفيد تقديم مقارنة بين حلقات بير العامة من الجهة اليمنى والحلقات الأخرى المعروفة في الأدبيات الرياضية لتوضيح الفروق والتشابهات بشكل أفضل.
Questions related to the research
  1. ما هو الهدف الرئيسي من هذه الورقة؟

    الهدف الرئيسي هو دراسة العلاقة بين حلقة معينة R وحلقات التشاكل للوحدات الحرة فوق R، ووصف الحلقة R كحلقة بير عامة من الجهة اليمنى.

  2. ما هي الشروط التي تجعل حلقة التشاكل لوحدة حرة F حلقة بير عامة من الجهة اليمنى؟

    تكون حلقة التشاكل لوحدة حرة F حلقة بير عامة من الجهة اليمنى إذا وفقط إذا كانت كل وحدة فرعية مغلقة من F تحتوي على مُلحق مباشر من F.

  3. ما هي العلاقة بين الوحدات الخالية من الالتواء والوحدات الإسقاطية في سياق هذه الورقة؟

    كل وحدة R خالية من الالتواء تحتوي على وحدة R إسقاطية إذا كانت حلقة التشاكل لأي وحدة R حرة هي حلقة بير عامة من الجهة اليمنى.

  4. ما هي الانتقادات المحتملة لهذه الورقة؟

    الانتقادات المحتملة تشمل نقص الأمثلة التطبيقية، تعقيد بعض البراهين، والحاجة إلى توضيح الفروق والتشابهات بين حلقات بير العامة من الجهة اليمنى والحلقات الأخرى المعروفة.


References used
Kaplansky, I. (1968). Rings of Operator, New York: Amsterdam: W.A.Benjamin inc
Tsukerman, G. M. (1966). Rings of Endomorphisms of free module, Siberian. Math. J.7,923-927
(Goodearl, K. R. (1976). Ring Theory, Non-Singular Rings and modules, Pure and Appl. Math. N33, Dekker (new york
rate research

Read More

The objectiv of this paper is to study the relationship between certain ring R and endomorphism rings of free modules over R. Specifically, the basic problem is to describe ring R, which for it endomorphism ring of all free R-module, is a generali zed right Baer ring, right I1-ring. Call a ring R is a generalized right Baer ring if any right annihilator contains a non-zero idempotent. We call a ring R is right I1-ring if the right annihilator of any element of R contains a non-zero idempotent. This text is showing that each right ideal of a ring R contains a projective right ideal if the endomorphism ring of any free R-module is a right I1-ring. And shown over a ring R, the endomorphism ring of any free R-module is a generalized right Baer ring if and only if endomorphism ring of any free R-module is an I1-ring.
Let R be a ring with identity. The ain is to study some fundamental properties of a ring R when R is regular or semi-potent and the radical Jacobson of R when R is semi-potent. New results were obtained including necessary and sufficient condition s of R to be regular or semi-potent. New substructures of R are studied and their relationship with the total of R.
The objective of this paper is to continue our study for a right 1 I - rings and to generalize the concept of 1 I - rings to modules. We call a ring R a right 1 I - ring if every right annihilator for any element of R contains a nonzero idempotent .
Improving model generalization on held-out data is one of the core objectives in common- sense reasoning. Recent work has shown that models trained on the dataset with superficial cues tend to perform well on the easy test set with superficial cues b ut perform poorly on the hard test set without superficial cues. Previous approaches have resorted to manual methods of encouraging models not to overfit to superficial cues. While some of the methods have improved performance on hard instances, they also lead to degraded performance on easy in- stances. Here, we propose to explicitly learn a model that does well on both the easy test set with superficial cues and the hard test set without superficial cues. Using a meta-learning objective, we learn such a model that improves performance on both the easy test set and the hard test set. By evaluating our models on Choice of Plausible Alternatives (COPA) and Commonsense Explanation, we show that our proposed method leads to improved performance on both the easy test set and the hard test set upon which we observe up to 16.5 percentage points improvement over the baseline.
The purpose of the research is to study the Bergman function and Bergman distance to generalize Moreau – Yosida Approximation. To do that we replace the quadratic additive terms in Moreau – Yosida Approximates by more general Bergman distance and s tudy properties of generalized approximation and prove equivalence between epigraph – convergence and pointwise convergence of the generalized Moreau – Yosida Approximation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا