موضوع هذا البحث هو دراسة العلاقة بين حلقة ماR و بين حلقة الإندومورفيزمات لمـودول حـرF،
فوق هذه الحلقة. و بشكل خاص فقد تم وصف الحلقة التي تكون لأجلها حلقة الإندومورفيزمات لأي مودول
حر فوقها، و هي حلقة بير المعممة. حيث تم إثبـات أن الـشرط الـلازم و الكـافي لكـي تكـون حلقـة
الإندومورفيزمات لمودول حر حلقة بير هو أن يحوي كل مودول جزئي مغلق من هذا المودول الحر حـداً
مباشراً.
كذلك فقد تم إثبات أنه إذا كانت حلقة الاندومورفيزمات لمودول حر F حلقة بير المعممة, فإن كـل
مودول جزئي دون فتل من F يحوي مودولاً إسقاطياً.
The object of this paper is to study the relationship between certain ring R
and endomorphism rings of free modules over R. Specifically, the basic
problem is to describe ring R, which is endomorphism ring of all free Rmodule,
as a generalized right Bear ring. Call a ring R a generalized right Bear
ring if any right annihilator contains a nonzero idempotent. A structure
theorem is obtained: endomorphism ring of a free module F is a generalized
right Bear ring if and only if every closed submodule of F contains a direct
summand of F. It is shown that every torsionless R-module contains a
projective R-module if endomorphism ring of any free R-module is a
generalized right Bear ring.
Artificial intelligence review:
Research summary
تهدف هذه الورقة إلى دراسة العلاقة بين حلقة معينة R وحلقات التشاكل للوحدات الحرة فوق R. تتمثل المشكلة الأساسية في وصف الحلقة R، التي هي حلقة التشاكل لجميع الوحدات الحرة على R، كحلقة بير عامة من الجهة اليمنى. تُسمى الحلقة R حلقة بير عامة من الجهة اليمنى إذا كان أي مُبيد أيمن يحتوي على عنصر مُبيد غير صفري. تم الحصول على نظرية هيكلية: تكون حلقة التشاكل لوحدة حرة F حلقة بير عامة من الجهة اليمنى إذا وفقط إذا كانت كل وحدة فرعية مغلقة من F تحتوي على مُلحق مباشر من F. كما تم إثبات أن كل وحدة R خالية من الالتواء تحتوي على وحدة R إسقاطية إذا كانت حلقة التشاكل لأي وحدة R حرة هي حلقة بير عامة من الجهة اليمنى.
Critical review
دراسة نقدية: تقدم هذه الورقة إسهامًا مهمًا في نظرية الحلقات والوحدات من خلال تقديم مفهوم جديد لحلقات بير العامة من الجهة اليمنى وربطها بحلقات التشاكل للوحدات الحرة. ومع ذلك، يمكن القول أن الورقة تفتقر إلى الأمثلة التطبيقية التي يمكن أن توضح الفائدة العملية لهذه النتائج النظرية. كما أن البرهان على بعض النتائج قد يكون معقدًا ويحتاج إلى توضيح أكثر لتسهيل الفهم على القراء غير المتخصصين. بالإضافة إلى ذلك، قد يكون من المفيد تقديم مقارنة بين حلقات بير العامة من الجهة اليمنى والحلقات الأخرى المعروفة في الأدبيات الرياضية لتوضيح الفروق والتشابهات بشكل أفضل.
Questions related to the research
-
ما هو الهدف الرئيسي من هذه الورقة؟
الهدف الرئيسي هو دراسة العلاقة بين حلقة معينة R وحلقات التشاكل للوحدات الحرة فوق R، ووصف الحلقة R كحلقة بير عامة من الجهة اليمنى.
-
ما هي الشروط التي تجعل حلقة التشاكل لوحدة حرة F حلقة بير عامة من الجهة اليمنى؟
تكون حلقة التشاكل لوحدة حرة F حلقة بير عامة من الجهة اليمنى إذا وفقط إذا كانت كل وحدة فرعية مغلقة من F تحتوي على مُلحق مباشر من F.
-
ما هي العلاقة بين الوحدات الخالية من الالتواء والوحدات الإسقاطية في سياق هذه الورقة؟
كل وحدة R خالية من الالتواء تحتوي على وحدة R إسقاطية إذا كانت حلقة التشاكل لأي وحدة R حرة هي حلقة بير عامة من الجهة اليمنى.
-
ما هي الانتقادات المحتملة لهذه الورقة؟
الانتقادات المحتملة تشمل نقص الأمثلة التطبيقية، تعقيد بعض البراهين، والحاجة إلى توضيح الفروق والتشابهات بين حلقات بير العامة من الجهة اليمنى والحلقات الأخرى المعروفة.
References used
Kaplansky, I. (1968). Rings of Operator, New York: Amsterdam: W.A.Benjamin inc
Tsukerman, G. M. (1966). Rings of Endomorphisms of free module, Siberian. Math. J.7,923-927
(Goodearl, K. R. (1976). Ring Theory, Non-Singular Rings and modules, Pure and Appl. Math. N33, Dekker (new york
The objectiv of this paper is to study the relationship between certain ring R
and endomorphism rings of free modules over R. Specifically, the basic problem is
to describe ring R, which for it endomorphism ring of all free R-module, is a
generali
Let R be a ring with identity.
The ain is to study some fundamental properties of a ring R when R is regular
or semi-potent and the radical Jacobson of R when R is semi-potent.
New results were obtained including necessary and sufficient condition
The objective of this paper is to continue our study for a right 1 I - rings and
to generalize the concept of 1 I - rings to modules. We call a ring R a right
1 I - ring if every right annihilator for any element of R contains a nonzero
idempotent
Improving model generalization on held-out data is one of the core objectives in common- sense reasoning. Recent work has shown that models trained on the dataset with superficial cues tend to perform well on the easy test set with superficial cues b
The purpose of the research is to study the Bergman function and Bergman distance to generalize Moreau – Yosida Approximation.
To do that we replace the quadratic additive terms in Moreau – Yosida Approximates by more general Bergman distance and s