Do you want to publish a course? Click here

Maximum power point tracking system design with Buck-Boost converter

تصميم نظام تتبع استطاعة أعظمية مع محول رافع - خافض للجهد

1289   3   169   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

DC-DC converter is one of the most essential component for efficient utilization in renewable energy sources. The main goal of this paper is to use Maximum power point tracking (MPPT) system and buck-boost DC/DC converter in the photovoltaic (PV) system to maximize the (PV) output power, irrespective of the temperature and irradiation conditions.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية تصميم نظام تتبع نقطة الاستطاعة العظمى (MPPT) باستخدام محول رافع-خافض للجهد (Buck-Boost Converter) في نظام كهروضوئي (PV) بهدف تحقيق أقصى استفادة من الطاقة الشمسية تحت ظروف متغيرة من الإشعاع ودرجة الحرارة. يتم التحكم في المحول بواسطة متحكم صغري (Microcontroller) من نوع PIC16F877A، والذي تم برمجته باستخدام تقنية الناقلية المتزايدة (Incremental Conductance Method). أظهرت النتائج العملية أن النظام قادر على تحقيق نقطة الاستطاعة العظمى بكفاءة تجاوزت 98% وسرعة استجابة أقل من 0.3 ثانية. تم استخدام أجهزة قياس معيارية وألواح شمسية من نوع Monocrystalline لتحقيق هذه النتائج. كما تم تصميم النظام بحيث يكون قابلاً للتطوير لاستخدامات منزلية من خلال إضافة محول DC-AC ونظام تخزين بطاريات.
Critical review
دراسة نقدية: تعتبر هذه الورقة البحثية مساهمة قيمة في مجال استخدام الطاقة الشمسية وتحسين كفاءة الأنظمة الكهروضوئية. ومع ذلك، يمكن توجيه بعض الملاحظات النقدية لتحسين البحث. أولاً، لم يتم التطرق بشكل كافٍ إلى تأثير العوامل البيئية الأخرى مثل الغبار والرطوبة على أداء النظام. ثانياً، كان من الممكن تقديم مقارنة أكثر تفصيلاً بين تقنية الناقلية المتزايدة وتقنيات أخرى لتتبع نقطة الاستطاعة العظمى. أخيراً، يمكن تحسين الورقة بإضافة دراسة اقتصادية تفصيلية لتوضيح الجدوى الاقتصادية للنظام المقترح في البيئات المختلفة.
Questions related to the research
  1. ما هي التقنية المستخدمة في تتبع نقطة الاستطاعة العظمى في هذا البحث؟

    تم استخدام تقنية الناقلية المتزايدة (Incremental Conductance Method) لتتبع نقطة الاستطاعة العظمى.

  2. ما نوع المتحكم الصغري المستخدم في النظام؟

    تم استخدام متحكم صغري من نوع PIC16F877A.

  3. ما هي كفاءة النظام في تحقيق نقطة الاستطاعة العظمى؟

    حقق النظام كفاءة تجاوزت 98% في تتبع نقطة الاستطاعة العظمى.

  4. ما هي سرعة استجابة النظام لتغيرات الإشعاع ودرجة الحرارة؟

    كانت سرعة استجابة النظام أقل من 0.3 ثانية.


References used
MASTERS,G 2014 - Renewable and Efficient Electric Power Systems. A JOHN WILEY & SONS, PUBLICATION, New Jersey, 676 P
TOMABECHI, K , 2010 - Energy Resources in the Future, Energies,Vol.3, pp.686-695
WEISSBACH,R , TORRES,K , 2001- A Non-inverting Buck- Boost Converter with Reduced Components Using a Microcontroller. Proceedings of the Southeast Conference, South Carolina, pp.79-84
rate research

Read More

This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Maximum Power Point Tracker controller (MPPT controller), based in his work on the Maximum Power Point Tracking techniques via the direct control met hod. Which used to control the duty cycle of DC-DC Voltage Converter, to achieve the photovoltaic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, our work is focused on the simulation of the components of the power generating system, such as the photovoltaic system, DC-DC Boost Converter and a MPPT controller in Matlab/Simulink environment. The simulating of the MPPT controller was based on several algorithms such as: Constant Voltage algorithm, Perturb and Observe algorithm and Incremental Conductance algorithm by using Embedded MATLAB function. The simulation results showed the effectiveness of the MPPT controller to increase the photovoltaic system power compared with non-use of a MPPT controller. The results also showed the best performance of MPPT controller based on Perturb and Observe and Incremental Conductance algorithm, compared with constant voltage algorithm in tracking the Maximum Power Point under atmospheric changes.
This paper offer a designed module for buck-boost DC-DC converter, able to solve unsteady charging voltage problem, due to constant decreasing scale of transformers and grid or solar panel voltage drop, this module has been designed using fuzzy log ic in PWM control and simulated in matlab and all test and its results illustrated the suitable figure.
This research is a study of a new control method of switching non-isolated dc-dc boost converters used in Photovoltaic systems. This method is called Sliding Mode Control (SMC), which is considered as an alternative to other methods, to keep a sta ble and constant output voltage by changing the input voltage and load current. The analyzing method of the switching nonisolated dc-dc boost converters using SMC shows the same complexity of Clasic circuits, but it gives an increasing potential and a high-dynamic response to ensure a constant output voltage reaches to 40volt by changing the input voltage in the range (16-21volt) and the load (8-13Ω). Methods to measure the accuracy, error, and efficiency of maximum power point trackers (MPPT) have been identified and presented in a schematic way, together with definitions of terms and calculations.
This research deals with the modeling of a Multi-Layers Feed Forward Artificial Neural Networks (MLFFNN), trained using Gradient Descent algorithm with Momentum factor & adaptive learning rate, to estimate the output of the neural network correspon ding to the optimal Duty Cycle of DC-DC Boost Converter to track the Maximum Power Point of Photovoltaic Energy Systems. Thus, the DMPPT-ANN “Developed MPPT-ANN” controller proposed in this research, independent in his work on the use of electrical measurements output of PV system to determine the duty cycle, and without the need to use a Proportional-Integrative Controller to control the cycle of the work of the of DC-DC Boost Converter, and this improves the dynamic performance of the proposed controller to determine the optimal Duty Cycle accurately and quickly. In this context, this research discusses the optimal selection of the proposed MLFFNN structure in the research in terms of determining the optimum number of hidden layers and the optimal number of neurons in them, evaluating the values of the Mean square error and the resulting Correlation Coefficient after each training of the neural network. The final network model with the optimal structure is then adopted to form the DMPPT-ANN Controller to track the MPP point of the PV system. The simulation results performed in the Matlab / Simulink environment demonstrated the best performance of the proposed DMPPT-ANN controller based on the MLFFNN neural network model, by accurately estimating the Duty Cycle and improving the response speed of the PV system output to MPP access, , as well as finally eliminating the resulting oscillations in the steady state of the Power response curve of PV system compared with the use of a number of reference controls: an advanced tracking controller MPPT-ANN-PI based on ANN network to estimate MPP point voltage with conventional PI controller, a MPPT-FLC and a conventional MPPT-INC uses the Incremental Conductance technique INC
Fuzzy logic control is used to connect a photovoltaic system to the electrical grid by using three phase fully controlled converter (inverter), This controller is going to track the maximum power point and inject the maximum available power from th e PV system to the grid by determining the trigger angle that must be applied on the switches: Linguistic variables are going to be chosen to determine the amount of change in the trigger angle of the inverter to track the maximum power.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا