Do you want to publish a course? Click here

A THEORETICAL STUDY OF MAXIMUM POWER POINT TRACKERS FOR PHOTOVOLTAIC SYSTEMS USING FUZZY LOGIC TECHNIQUES

دراسة نظرية لتتبع نقطة الإستطاعة العظمى للنظم الكهروضوئية المستقلة باستخدام تقنيات المنطق العائم

2094   2   93   5.0 ( 1 )
 Publication date 2017
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In the following study we make a simulation of an independent photovoltaic system connected to an (ohm - unit of electrical resistance) load which consists of the following parts: (Photovoltaic Module - Converter dc- dc - Control system to tracking the maximum power point via MATLAB & Simulink program) Taking advantage of equations of Photovoltaic Module we chart the graph and simulate curves of the Module. We also simulate the converter –type Cuk- which gives higher or lower voltage than input voltage but with reversed polarity. We also make a comparison between the two systems tracking: the first tracker is a traditional one and the second one is a system in which it uses a fuzzy logic tracker. The results of the comparison shows different capacities taking into consideration the varieties of weather conditions of regular solar radiation as well as the partial shadow. Such results showed that fuzzy logic has got more capability to harmonize with all conditions especially in cases of low solar radiation and partial shadow.


Artificial intelligence review:
Research summary
تتناول هذه الدراسة نظرية تتبع نقطة الاستطاعة العظمى (MPPT) للنظم الكهروضوئية المستقلة باستخدام تقنيات المنطق العائم. تم محاكاة نظام كهروضوئي مستقل مرتبط بحمل أومي يتكون من موديول كهروضوئي، مقطع DC-DC، ونظام تحكم باستخدام برنامج MATLAB/Simulink. تم تمثيل الموديول الكهروضوئي باستخدام المعادلات الرياضية وإخراج منحنياته، كما تم تمثيل المبدل من نوع Cuk الذي يعطي توتر خرج أكبر أو أصغر من توتر الدخل بقطبية معكوسة. تم مقارنة نظامي تتبع: نظام تقليدي ونظام يستخدم تقنية المنطق العائم. أظهرت النتائج أن تقنية المنطق العائم تتناغم مع جميع الظروف، خاصة في حالات الإشعاع الشمسي المنخفضة والتظليل الجزئي. تم اختبار كفاءة طريقة تتبع نقطة الاستطاعة العظمى باستخدام تقنيات المنطق العائم من خلال المحاكاة في بيئة MATLAB تحت ظروف جوية مختلفة وتغير الأحمال. أظهرت النتائج أن نظام المنطق العائم يوفر أداءً أفضل مقارنة بالنظام التقليدي، خاصة في الظروف الجوية المتغيرة والتظليل الجزئي.
Critical review
دراسة نقدية: على الرغم من أن الدراسة تقدم نتائج مشجعة حول كفاءة تقنية المنطق العائم في تتبع نقطة الاستطاعة العظمى، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، لم يتم التطرق إلى تأثير العوامل البيئية الأخرى مثل الغبار والرطوبة على أداء النظام. ثانياً، الدراسة تعتمد بشكل كبير على المحاكاة باستخدام MATLAB/Simulink، ولم يتم التحقق من النتائج من خلال تجارب عملية على أرض الواقع. ثالثاً، يمكن تحسين الدراسة من خلال مقارنة تقنية المنطق العائم بتقنيات أخرى حديثة لتتبع نقطة الاستطاعة العظمى. وأخيراً، لم يتم التطرق إلى تكلفة تنفيذ النظام ومدى جدواه الاقتصادية مقارنة بالأنظمة التقليدية.
Questions related to the research
  1. ما هي مكونات النظام الكهروضوئي المستقل الذي تم محاكاته في الدراسة؟

    يتكون النظام الكهروضوئي المستقل من موديول كهروضوئي، مقطع DC-DC، ونظام تحكم لتتبع نقطة الاستطاعة العظمى باستخدام برنامج MATLAB/Simulink.

  2. ما هو نوع المبدل الذي تم استخدامه في الدراسة؟

    تم استخدام مبدل من نوع Cuk الذي يعطي توتر خرج أكبر أو أصغر من توتر الدخل بقطبية معكوسة.

  3. ما هي الظروف الجوية التي تم اختبار النظام تحتها؟

    تم اختبار النظام تحت ظروف جوية مختلفة من الإشعاع الشمسي النظامي والتظليل الجزئي.

  4. ما هي التقنية التي أثبتت كفاءة أعلى في تتبع نقطة الاستطاعة العظمى؟

    أثبتت تقنية المنطق العائم كفاءة أعلى في تتبع نقطة الاستطاعة العظمى مقارنة بالنظام التقليدي، خاصة في حالات الإشعاع الشمسي المنخفضة والتظليل الجزئي.


References used
A Thesis Akihiro Oi , 2005- DESIGN AND SIMULATION OF PHOTOVOLTAIC WATER PUMPING SYSTEM . Presented to the Faculty of California Polytechnic State University, San Luis Obispo , 113p
Areen Abdallah Allataifeh1, Khaled Bataineh1, Mohammad Al- Khedher2 , 2015 - Maximum Power Point Tracking Using Fuzzy Logic Controller under Partial Conditions . 2015 by authors and Scientific Research Publishing Inc Jordan University of Science and Technology, 15p
MUHAMMAD H. RASHID , 2001 - POWER ELECTRONICS HANDBOOK . University of West Florida Joint Program and Computer Engineering , ACADEMIC PRESS , 892p
rate research

Read More

Fuzzy logic control is used to connect a photovoltaic system to the electrical grid by using three phase fully controlled converter (inverter), This controller is going to track the maximum power point and inject the maximum available power from th e PV system to the grid by determining the trigger angle that must be applied on the switches: Linguistic variables are going to be chosen to determine the amount of change in the trigger angle of the inverter to track the maximum power.
This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Maximum Power Point Tracker controller (MPPT controller), based in his work on the Maximum Power Point Tracking techniques via the direct control met hod. Which used to control the duty cycle of DC-DC Voltage Converter, to achieve the photovoltaic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, our work is focused on the simulation of the components of the power generating system, such as the photovoltaic system, DC-DC Boost Converter and a MPPT controller in Matlab/Simulink environment. The simulating of the MPPT controller was based on several algorithms such as: Constant Voltage algorithm, Perturb and Observe algorithm and Incremental Conductance algorithm by using Embedded MATLAB function. The simulation results showed the effectiveness of the MPPT controller to increase the photovoltaic system power compared with non-use of a MPPT controller. The results also showed the best performance of MPPT controller based on Perturb and Observe and Incremental Conductance algorithm, compared with constant voltage algorithm in tracking the Maximum Power Point under atmospheric changes.
Photovoltaic systems (PVs)offer an environmentally friendlysource of electricity; however, up till now its price is still relatively high.Achieving the maximum power of these systemsand maintaining it with lowest price in real applications is highl y associated with Maximum Power Point Tracking (MPPT) under different operation conditions. This paper proposes the use of Genetic Algorithm (GA) for tracking maximum power point depending on the solar cell model. GA gives, directly and precisely, the optimal operating voltage (VOP) of the cell where the DC/DC converter will be adjusted according to it based on the previous knowledge of the open circuit voltage (VOC) and short circuit current (ISC) of the cell. To validate the correctness and effectiveness of the proposed algorithm, MATLAB R2010a programs for GA and PV system are written and incorporated together where the series resistant of the cell is considered while the shunt resistant is neglected. Simulation results of applying GA on different types of solar panels showedthe possibilityof the accurateadjusting of the voltagetothe optimum valueand thusoperating the systemat maximum power point.
Search is based on the first stage DC/DC in the solar photovoltaic system, where it was appropriate to use Ripple Correlation Control method for tracking the maximum power point of photovoltaic arrays. The technique takes advantage of the signal ri pple, which is automatically present in power converters, where the ripple is interpreted as a perturbation from which a gradient ascent optimization can be realized. The Basic feature of Ripple Correlation Control technique converges asymptotically at maximum speed to the maximum power point, and has simple circuit implementations. And will validate the results in practice.
This research deals with the modeling of a Multi-Layers Feed Forward Artificial Neural Networks (MLFFNN), trained using Gradient Descent algorithm with Momentum factor & adaptive learning rate, to estimate the output of the neural network correspon ding to the optimal Duty Cycle of DC-DC Boost Converter to track the Maximum Power Point of Photovoltaic Energy Systems. Thus, the DMPPT-ANN “Developed MPPT-ANN” controller proposed in this research, independent in his work on the use of electrical measurements output of PV system to determine the duty cycle, and without the need to use a Proportional-Integrative Controller to control the cycle of the work of the of DC-DC Boost Converter, and this improves the dynamic performance of the proposed controller to determine the optimal Duty Cycle accurately and quickly. In this context, this research discusses the optimal selection of the proposed MLFFNN structure in the research in terms of determining the optimum number of hidden layers and the optimal number of neurons in them, evaluating the values of the Mean square error and the resulting Correlation Coefficient after each training of the neural network. The final network model with the optimal structure is then adopted to form the DMPPT-ANN Controller to track the MPP point of the PV system. The simulation results performed in the Matlab / Simulink environment demonstrated the best performance of the proposed DMPPT-ANN controller based on the MLFFNN neural network model, by accurately estimating the Duty Cycle and improving the response speed of the PV system output to MPP access, , as well as finally eliminating the resulting oscillations in the steady state of the Power response curve of PV system compared with the use of a number of reference controls: an advanced tracking controller MPPT-ANN-PI based on ANN network to estimate MPP point voltage with conventional PI controller, a MPPT-FLC and a conventional MPPT-INC uses the Incremental Conductance technique INC
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا