Do you want to publish a course? Click here

Arabic Language as a Second Language: Challenges Facing Foreign Learners

اللغة العربية كلغة ثانية و التحديات التي تواجه دارسيها الأجانب

4005   1   71   0 ( 0 )
 Publication date 2010
  fields Arabic
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This research deals with teaching Arabic as a second language. It tackles the different characteristics and nationalities of learners in addition to their objectives in relation to learning Arabic. This is taken into consideration when preparing the required curricula from two perspectives; the linguistic and the functional one. This research sheds light on the role of technology that is utilized to facilitate the task of learning Arabic by speakers of other languages in relation to the pronunciation of letters, sounds, writing, grammatical conjugation, comprehension and reading. The research also sheds light on the most important challenges facing the Arabic Language since the twenty first century such as the cultural challenge and the revival of local and spoken dialects.


Artificial intelligence review:
Research summary
يتناول البحث تعليم اللغة العربية للناطقين بغيرها كلغة ثانية، ويستعرض طبيعة الدارسين وجنسياتهم المختلفة وأهدافهم من دراسة العربية. يركز البحث على ضرورة بناء مناهج تعليمية تأخذ بعين الاعتبار المحورين اللغوي والوظيفي، ودور التقنيات الحديثة في تسهيل عملية التعلم. يناقش البحث تحديات تعليم اللغة العربية منذ بداية القرن الحادي والعشرين، مثل التحديات الثقافية وإحياء اللهجات المحلية. يعتمد الباحث على المنهج الوصفي التحليلي ويستعرض دراسات سابقة تناولت موضوع تعليم اللغة العربية للناطقين بغيرها، مشيرًا إلى أهمية استخدام التكنولوجيا في التعليم. يختتم البحث بتوصيات لتحسين تعليم اللغة العربية، مثل تطوير مناهج تعليمية تتناسب مع تطلعات الدارسين الأجانب واستخدام التقنيات الحديثة في التعليم.
Critical review
دراسة نقدية: على الرغم من أهمية البحث في تسليط الضوء على تحديات تعليم اللغة العربية للناطقين بغيرها، إلا أن هناك بعض النقاط التي تحتاج إلى مزيد من التوضيح. أولاً، البحث يفتقر إلى دراسات ميدانية حديثة تدعم النتائج المذكورة. ثانياً، التركيز على التكنولوجيا كحل وحيد قد يكون مبالغاً فيه، حيث يجب أيضاً التركيز على الجوانب الثقافية والاجتماعية التي تؤثر على تعلم اللغة. ثالثاً، البحث لم يتناول بشكل كافٍ الفروقات بين اللهجات العربية وكيفية التعامل معها في المناهج التعليمية. وأخيراً، التوصيات المقدمة تحتاج إلى مزيد من التفصيل لتكون قابلة للتطبيق العملي.
Questions related to the research
  1. ما هي التحديات الرئيسية التي تواجه تعليم اللغة العربية للناطقين بغيرها؟

    التحديات تشمل التحديات الثقافية، إحياء اللهجات المحلية، وصعوبة تطبيق التكنولوجيا بشكل فعال في التعليم.

  2. ما هو الدور الذي تلعبه التكنولوجيا في تعليم اللغة العربية للناطقين بغيرها؟

    التكنولوجيا تسهل تعليم نطق الحروف والأصوات، الكتابة، الاستماع، التراكيب النحوية، والاستيعاب والقراءة.

  3. ما هي الفروقات بين تعليم اللغة العربية كلغة أجنبية وكلغة ثانية؟

    تعليم اللغة كلغة أجنبية يتم في المدارس كمادة دراسية، بينما تعليمها كلغة ثانية يكون في مراكز خاصة ويكون أساسياً للحياة اليومية والمعاملات الرسمية.

  4. ما هي التوصيات التي قدمها البحث لتحسين تعليم اللغة العربية للناطقين بغيرها؟

    التوصيات تشمل تطوير مناهج تعليمية تتناسب مع تطلعات الدارسين الأجانب، استخدام التقنيات الحديثة، وتدريب المعلمين على استخدام هذه التقنيات.


References used
Corder, S .Pit. (1966) the visual element in language teaching, Longmans,London,P.5-7
إبراهيم، بدري كمال ( 1990 )، تعليم اللغة الأجنبية، مجلة الموجة في تعليم اللغة . العربية لغير الناطقين بها، العدد الثالث ص6
الأفغاني، سعيد ( 1971 )، حاضر اللغة العربية، الطبعة الثانية، دار الفكر، . ص 106
rate research

Read More

The study deals with the concept, the beginning and the development phases of digital library explaining the problem of digital idioms. It sheds light on the requirements and groups of digital library and the technical processes through indexing a nd classification. In addition to that, the study discuses the mechanism of digital regaining, and explain the ways of search on digital information clarifying the meaning and the mechanism of Boolean logic in search of information. Finally, the paper views the image of Arabic digital libraries and introduces the most important challenges that faces the Arabic digital libraries in the current time. This study ends up to a set of results and recommendations.
Abstract Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of language understanding tasks---reading comprehension, textual entailment, and so on. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5k new instances across 6 distinct NLU tasks. Additionally, we present the first results on state-of-the-art monolingual and multilingual pre-trained language models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.1
How difficult is it for English-as-a-second language (ESL) learners to read noisy English texts? Do ESL learners need lexical normalization to read noisy English texts? These questions may also affect community formation on social networking sites wh ere differences can be attributed to ESL learners and native English speakers. However, few studies have addressed these questions. To this end, we built highly accurate readability assessors to evaluate the readability of texts for ESL learners. We then applied these assessors to noisy English texts to further assess the readability of the texts. The experimental results showed that although intermediate-level ESL learners can read most noisy English texts in the first place, lexical normalization significantly improves the readability of noisy English texts for ESL learners.
Large language models (LM) generate remarkably fluent text and can be efficiently adapted across NLP tasks. Measuring and guaranteeing the quality of generated text in terms of safety is imperative for deploying LMs in the real world; to this end, pr ior work often relies on automatic evaluation of LM toxicity. We critically discuss this approach, evaluate several toxicity mitigation strategies with respect to both automatic and human evaluation, and analyze consequences of toxicity mitigation in terms of model bias and LM quality. We demonstrate that while basic intervention strategies can effectively optimize previously established automatic metrics on the REALTOXICITYPROMPTS dataset, this comes at the cost of reduced LM coverage for both texts about, and dialects of, marginalized groups. Additionally, we find that human raters often disagree with high automatic toxicity scores after strong toxicity reduction interventions---highlighting further the nuances involved in careful evaluation of LM toxicity.
The emergence of Multi-task learning (MTL)models in recent years has helped push thestate of the art in Natural Language Un-derstanding (NLU). We strongly believe thatmany NLU problems in Arabic are especiallypoised to reap the benefits of such model s. Tothis end we propose the Arabic Language Un-derstanding Evaluation Benchmark (ALUE),based on 8 carefully selected and previouslypublished tasks. For five of these, we providenew privately held evaluation datasets to en-sure the fairness and validity of our benchmark.We also provide a diagnostic dataset to helpresearchers probe the inner workings of theirmodels.Our initial experiments show thatMTL models outperform their singly trainedcounterparts on most tasks. But in order to en-tice participation from the wider community,we stick to publishing singly trained baselinesonly. Nonetheless, our analysis reveals thatthere is plenty of room for improvement inArabic NLU. We hope that ALUE will playa part in helping our community realize someof these improvements. Interested researchersare invited to submit their results to our online,and publicly accessible leaderboard.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا