Do you want to publish a course? Click here

ParsiNLU: A Suite of Language Understanding Challenges for Persian

Parsinlu: مجموعة من اللغة فهم التحديات للفارسية

564   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Abstract Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of language understanding tasks---reading comprehension, textual entailment, and so on. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5k new instances across 6 distinct NLU tasks. Additionally, we present the first results on state-of-the-art monolingual and multilingual pre-trained language models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.1



References used
https://aclanthology.org/
rate research

Read More

This research deals with teaching Arabic as a second language. It tackles the different characteristics and nationalities of learners in addition to their objectives in relation to learning Arabic. This is taken into consideration when preparing t he required curricula from two perspectives; the linguistic and the functional one. This research sheds light on the role of technology that is utilized to facilitate the task of learning Arabic by speakers of other languages in relation to the pronunciation of letters, sounds, writing, grammatical conjugation, comprehension and reading. The research also sheds light on the most important challenges facing the Arabic Language since the twenty first century such as the cultural challenge and the revival of local and spoken dialects.
Supervised approaches usually achieve the best performance in the Word Sense Disambiguation problem. However, the unavailability of large sense annotated corpora for many low-resource languages make these approaches inapplicable for them in practice. In this paper, we mitigate this issue for the Persian language by proposing a fully automatic approach for obtaining Persian SemCor (PerSemCor), as a Persian Bag-of-Word (BoW) sense-annotated corpus. We evaluated PerSemCor both intrinsically and extrinsically and showed that it can be effectively used as training sets for Persian supervised WSD systems. To encourage future research on Persian Word Sense Disambiguation, we release the PerSemCor in http://nlp.sbu.ac.ir.
In this paper, we propose a definition and taxonomy of various types of non-standard textual content -- generally referred to as noise'' -- in Natural Language Processing (NLP). While data pre-processing is undoubtedly important in NLP, especially wh en dealing with user-generated content, a broader understanding of different sources of noise and how to deal with them is an aspect that has been largely neglected. We provide a comprehensive list of potential sources of noise, categorise and describe them, and show the impact of a subset of standard pre-processing strategies on different tasks. Our main goal is to raise awareness of non-standard content -- which should not always be considered as noise'' -- and of the need for careful, task-dependent pre-processing. This is an alternative to blanket, all-encompassing solutions generally applied by researchers through standard'' pre-processing pipelines. The intention is for this categorisation to serve as a point of reference to support NLP researchers in devising strategies to clean, normalise or embrace non-standard content.
This paper presents a production Semi-Supervised Learning (SSL) pipeline based on the student-teacher framework, which leverages millions of unlabeled examples to improve Natural Language Understanding (NLU) tasks. We investigate two questions relate d to the use of unlabeled data in production SSL context: 1) how to select samples from a huge unlabeled data pool that are beneficial for SSL training, and 2) how does the selected data affect the performance of different state-of-the-art SSL techniques. We compare four widely used SSL techniques, Pseudo-label (PL), Knowledge Distillation (KD), Virtual Adversarial Training (VAT) and Cross-View Training (CVT) in conjunction with two data selection methods including committee-based selection and submodular optimization based selection. We further examine the benefits and drawbacks of these techniques when applied to intent classification (IC) and named entity recognition (NER) tasks, and provide guidelines specifying when each of these methods might be beneficial to improve large scale NLU systems.
In this paper we discuss several challenges related to the development of a 3D game, whose goal is to raise awareness on cyberbullying while collecting linguistic annotation on offensive language. The game is meant to be used by teenagers, thus raisi ng a number of issues that need to be tackled during development. For example, the game aesthetics should be appealing for players belonging to this age group, but at the same time all possible solutions should be implemented to meet privacy requirements. Also, the task of linguistic annotation should be possibly hidden, adopting so-called orthogonal game mechanics, without affecting the quality of collected data. While some of these challenges are being tackled in the game development, some others are discussed in this paper but still lack an ultimate solution.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا