Do you want to publish a course? Click here

To What Extent Does Lexical Normalization Help English-as-a-Second Language Learners to Read Noisy English Texts?

إلى أي مدى تساعد التطبيع المعجمي المتعلمين في اللغة الإنجليزية من اللغة الإنجليزية إلى قراءة النصوص الإنجليزية الصاخبة؟

328   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

How difficult is it for English-as-a-second language (ESL) learners to read noisy English texts? Do ESL learners need lexical normalization to read noisy English texts? These questions may also affect community formation on social networking sites where differences can be attributed to ESL learners and native English speakers. However, few studies have addressed these questions. To this end, we built highly accurate readability assessors to evaluate the readability of texts for ESL learners. We then applied these assessors to noisy English texts to further assess the readability of the texts. The experimental results showed that although intermediate-level ESL learners can read most noisy English texts in the first place, lexical normalization significantly improves the readability of noisy English texts for ESL learners.



References used
https://aclanthology.org/
rate research

Read More

Machine translation performs automatic translation from one natural language to another. Neural machine translation attains a state-of-the-art approach in machine translation, but it requires adequate training data, which is a severe problem for low- resource language pairs translation. The concept of multimodal is introduced in neural machine translation (NMT) by merging textual features with visual features to improve low-resource pair translation. WAT2021 (Workshop on Asian Translation 2021) organizes a shared task of multimodal translation for English to Hindi. We have participated the same with team name CNLP-NITS-PP in two submissions: multimodal and text-only NMT. This work investigates phrase pairs injection via data augmentation approach and attains improvement over our previous work at WAT2020 on the same task in both text-only and multimodal NMT. We have achieved second rank on the challenge test set for English to Hindi multimodal translation where Bilingual Evaluation Understudy (BLEU) score of 39.28, Rank-based Intuitive Bilingual Evaluation Score (RIBES) 0.792097, and Adequacy-Fluency Metrics (AMFM) score 0.830230 respectively.
This paper deals with Comparative Literature (CL) as it can be employed in Teaching Literature. After surveying the importance of CL as a whole, it proposes that CL can enhance teaching literature to Yemeni learners of English.
This study aims at identifying the types of lexical errors made by inservice English language teachers in Jordan. The sample of the study consists of 50 in-service English language teachers enrolled in the upgrading program at the Hashemite University. The data was gathered from the final exam papers of those enrolled in a course in methods of teaching English.
Automatic personalized corrective feedback can help language learners from different backgrounds better acquire a new language. This paper introduces a learner English dataset in which learner errors are accompanied by information about possible erro r sources. This dataset contains manually annotated error causes for learner writing errors. These causes tie learner mistakes to structures from their first languages, when the rules in English and in the first language diverge. This new dataset will enable second language acquisition researchers to computationally analyze a large quantity of learner errors that are related to language transfer from the learners' first language. The dataset can also be applied in personalizing grammatical error correction systems according to the learners' first language and in providing feedback that is informed by the cause of an error.
The lack of publicly available evaluation data for low-resource languages limits progress in Spoken Language Understanding (SLU). As key tasks like intent classification and slot filling require abundant training data, it is desirable to reuse existi ng data in high-resource languages to develop models for low-resource scenarios. We introduce xSID, a new benchmark for cross-lingual (x) Slot and Intent Detection in 13 languages from 6 language families, including a very low-resource dialect. To tackle the challenge, we propose a joint learning approach, with English SLU training data and non-English auxiliary tasks from raw text, syntax and translation for transfer. We study two setups which differ by type and language coverage of the pre-trained embeddings. Our results show that jointly learning the main tasks with masked language modeling is effective for slots, while machine translation transfer works best for intent classification.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا