Do you want to publish a course? Click here

Operators approaches in studying the problem on normal oscillations of system of m capillary viscous fluid

طرائق المؤثرات في دراسة الاهتزازات النظامية لمنظومة m سائل لزج شعري

1006   0   26   0 ( 0 )
 Publication date 2015
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Our aim of this paper is studying the problem on normal oscillations of system of capillary viscous fluids in vessel. We prove results about the spectrum of the problem for rotating vessel and prove that the systems of root elements ( eigenelements and associated elements ) form an Abel-Lidsky basis. Also , we use some results from the theory of J-self adjoint operators in studying the spectrum of the problem for non-rotating vessel.


Artificial intelligence review:
Research summary
يهدف هذا البحث إلى دراسة الاهتزازات النظامية لمجموعة من السوائل اللزجة الشعرية داخل أنبوب. يتم التركيز على حالتين: حالة الأنبوب الدوار وحالة الأنبوب الثابت. تم استخدام نظرية المؤثرات الذاتية المترافقة لدراسة طيف المسألة في حالة الأنبوب الثابت، بينما تم إثبات أن العناصر الجذرية تشكل قاعدة آبل-ليدسكي في حالة الأنبوب الدوار. البحث يعتمد على نتائج سابقة ويستخدم طرائق مثل الإسقاط العمودي والنظرية الطيفية. النتائج تشير إلى أن طيف المسألة منقطع وأن العناصر الجذرية تشكل قاعدة آبل-ليدسكي، مما يفتح المجال لتطبيقات عملية في الفيزياء والهندسة.
Critical review
دراسة نقدية: البحث يقدم مساهمة مهمة في مجال دراسة الاهتزازات النظامية للسوائل اللزجة الشعرية، ولكنه يمكن أن يكون أكثر وضوحاً في شرح التطبيقات العملية لهذه النتائج. كما أن استخدام المصطلحات الرياضية المعقدة قد يجعل من الصعب على القراء غير المتخصصين فهم المحتوى بالكامل. كان من الممكن تقديم أمثلة تطبيقية أو رسوم بيانية لتوضيح النقاط الرئيسية بشكل أفضل. بالإضافة إلى ذلك، يمكن أن يكون هناك مزيد من التوضيح حول كيفية استخدام النتائج في مجالات أخرى مثل الهندسة والفيزياء.
Questions related to the research
  1. ما هو الهدف الرئيسي من هذا البحث؟

    الهدف الرئيسي هو دراسة الاهتزازات النظامية لمجموعة من السوائل اللزجة الشعرية داخل أنبوب، سواء كان دواراً أو ثابتاً.

  2. ما هي الطرق المستخدمة في هذا البحث لدراسة طيف المسألة؟

    تم استخدام نظرية المؤثرات الذاتية المترافقة وطرق مثل الإسقاط العمودي والنظرية الطيفية لدراسة طيف المسألة.

  3. ما هي النتائج الرئيسية التي توصل إليها البحث؟

    النتائج الرئيسية تشير إلى أن طيف المسألة منقطع وأن العناصر الجذرية تشكل قاعدة آبل-ليدسكي في حالة الأنبوب الدوار، بينما يكون الطيف متناظراً بالنسبة للمحور الحقيقي في حالة الأنبوب الثابت.

  4. ما هي التطبيقات العملية المحتملة لهذه الدراسة؟

    التطبيقات العملية تشمل حل العديد من القضايا العلمية في الفيزياء والهندسة، مثل دراسة استقرار الحركات الصغيرة في الأنظمة الهيدروديناميكية.


References used
KOPACHEVSKY, N.D; KREIN, S.G; NGO ZUY CAN. Operators Methods in Linear Hydrodynamics:Evolution and Spectral Problems. Nauka, Moscow, 1989,159-181
KOPACHEVSKY,N.D; KREIN,S.G .Operator Approach in Linear Problems of Hydrodynamics Vol. 1: Self-ad joint Problems for Ideal Fluid, Birkh¨auserVerlag, Basel—Boston—Berlin, 2001,383
KOPACHEVSKY,N.D; KREIN,S.G. Operator Approach in Linear Problems of Hydrodynamics. Vol. 2: Nonself - adjoint Problems for Viscous Fluids, Birkh¨auser Verlag , Basel—Boston—Berlin, 2003, 444
rate research

Read More

The average queue size relates to network load according. The previous studies have focused on the average queue size as a constant value and did not take into account the changing behavior of curve queue size before reaching the steady state (whi ch calculate mathematical relationships). We focused on the queue size in the pattern of M/M/1 and M/M/1/L.
The aim of this paper is to study spin waves in ferromagnetic with spin (S=1/2) in complex coordinates system, the paper is divided into three sections: The First section is about finding a transportation system that enables us to study a microsco pic phenomenon ,its the spin waves in a classical way. The first step in this transportation system lies in finding the suitable wave function in the chosen coordinates, then the Hamiltonian and the Lagrangian then after that the dynamic equations in the general form, and testing the credibility of the system by making sure that it follow the rules of the study. The Second section is about the use of that system, which is called the Simi classic way of studying the spin waves, and finding the dispersing equations and energetic levels then discussing the resultes from different ways and effects. The Third section includes 1- Finding the ground state (basic) and the importance of finding the energy of the ground state lies in its direct effect on the system's energy.2- Finding the movement equations connected with time and place (the time-place equations). Its importance lies in two points; the first one is that it enables us to find the variance in the coordinates of the spin according to time. The second point is to know the spread speed of spin waves according to the chosen axle and the connection of the variation of domains (the magnetic sectors) with the spreading of spin waves and its speed
It's considered that، the ring of linear operator of vector space and stilled as a source of many mathematicians in general and algebreians particularly in introducing a new concepts in algebra and ring theory. In this subject I. Kaplansky proved the following theorem: "The ring of linear operators of finite dimension vector space is regular". The object of this paper is studying of ring of linear operator of vector space in abstract algebra point of view.
The oil reservoirs exploitation processes are one of very important steps of petroleum industry. The rentability of investor reservoir is related to correct planning and accurate understanding of rock properties and liquids flow in porous media. T he complexity of porous media contains hydrocarbon materials, with phases changes related to thermo-physiochemical phenomena, make the classical methods used to study the reservoir recovery are inaccurate and insufficient to predict the performance and behavior of reservoir. Recently, simulation and modeling are used to decrease the risks in the decision of the optimal recovery method, and achieve the best possible rentability. This method provides predictive capacity help us to better understanding of reservoir. By the suitable input data, we can solve the calibrated mathematical model analytically or numerically. We present in this research the formulation of mathematical model of isotropic-one dimension reservoir with single phase fluid flow. The numerical solution, the application of this model, and the mechanism of pressure diffusivity along productive formation, will be presented to simulate a reservoir with injection and production wells.
In Alassad Hospital we studied a population of 70 patients with pleural effusion for a period from August 2014 to Agust 2015 . The patients were 40men(57.1%) and 30 women(42.9) . According to the criteria used , 23(32.9%)patients were transudative ef fusions , and 47(67.1%)had exudative effusions . In our study we measured the level of cholesterol in the pleural fluid to assess the role of this measure in differentiating between transudativ and exudative effusion and the different causes of the effusion . We found that : pleural fluid cholesterol levels were significantly lower in the transudative than in exudative effusions ( 10.702±21.8 mg/dL and 32.67±69.39 mg/L respectively ) , but Light's criteria is better than level of cholesterol in pleural effusion to differentiate between the two types of effusions . but the stsatistic result improved when we add cholesterol into lights criteria . In the exudative effusion with lymphocytic cholesterol level more than 72.5 mg/dL is a strong suggestion for tuberculosis effusion , whether the level lower suggestive of malignant for exudative effusions . So , levels of cholesterol in pleural effusion can narrow the differential diagnosis of pleural effusions and help for perfecting the results .

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا