Do you want to publish a course? Click here

Kinetic properties in the gravitational field of material segments

خصائص تحريكية في حقل جاذبية قطع مستقيمة مادية

880   0   26   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we study the gravitational field generated by a straight material segment around itself. At first we discuss the calculation of the field, outside the support of the segment, and on this support, then we discuss the self field. We also study values of this field in special points. We also study the field generated by a set of segments,, where we interest in the value of this field in the common special points, and show the cases where this field is finite, or infinite. We provide a set of properties concerning the components of this field. We also discussed the concept of falling on the material segment, where we define the particular type of motion which we call successive motion, and we show its conditions. This motion really present a falling on the material segment.


Artificial intelligence review:
Research summary
في هذا البحث، يدرس د. خالد العبدالله حقل الجاذبية الذي تولده قطع مستقيمة مادية. يبدأ البحث بحساب الحقل خارج حامل القطعة المادية وعلى حاملها، ثم يتطرق إلى الحقل الذاتي. كما يتم دراسة قيمة هذا الحقل في النقاط الخاصة. يتناول البحث أيضًا الحقل الذي تولده مجموعة من القطع، مع التركيز على قيمة الحقل في النقاط الخاصة المشتركة، ويبين الحالات التي يكون فيها الحقل منتهيًا أو غير منتهي. يقدم البحث مجموعة من الخصائص المتعلقة بمركبات هذا الحقل، ويعرف نوعًا خاصًا من الحركة يسمى بالحركة التسلسلية، ويبين شروط تحققها، مما يمثل حقيقة حركة السقوط على القطعة المادية.
Critical review
دراسة نقدية: البحث يقدم تحليلًا دقيقًا ومفصلًا لحقل الجاذبية الناتج عن قطع مستقيمة مادية، وهو موضوع ذو أهمية كبيرة في الفيزياء النظرية. ومع ذلك، يمكن توجيه بعض الانتقادات البناءة. أولًا، البحث يفتقر إلى التطبيقات العملية التي يمكن أن تساعد في فهم كيفية استخدام هذه النتائج في مجالات أخرى مثل الهندسة أو الفلك. ثانيًا، كان من الممكن توضيح بعض المفاهيم الرياضية المعقدة بشكل أبسط لجعل البحث أكثر قابلية للفهم من قبل جمهور أوسع من العلماء والباحثين. أخيرًا، يمكن أن يكون هناك مزيد من الاستشهادات بالأبحاث الحديثة لتعزيز مصداقية النتائج المقدمة.
Questions related to the research
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي من البحث هو دراسة حقل الجاذبية الذي تولده قطع مستقيمة مادية وتحليل خصائص هذا الحقل في النقاط الخاصة، بالإضافة إلى تعريف نوع خاص من الحركة يسمى بالحركة التسلسلية.

  2. ما هي الحركة التسلسلية التي تم تعريفها في البحث؟

    الحركة التسلسلية هي نوع خاص من الحركة يمثل حركة السقوط على القطعة المادية، وتم تعريف شروط تحققها في البحث.

  3. ما هي النقاط الخاصة التي تم التركيز عليها في البحث؟

    النقاط الخاصة هي النقاط التي يكون فيها الحقل الناتج عن القطع المادية منتهيًا أو غير منتهي، وتم دراسة قيم الحقل في هذه النقاط بشكل مفصل.

  4. ما هي الانتقادات التي يمكن توجيهها لهذا البحث؟

    يمكن توجيه انتقادات تتعلق بنقص التطبيقات العملية، تعقيد بعض المفاهيم الرياضية، وقلة الاستشهاد بالأبحاث الحديثة لتعزيز مصداقية النتائج.


References used
Isaac Newton, Philosophiae Naturalis Principia Mathematica, Edmond Halley, London, 1687
WESTFALL Richard, « Newton », Figures de la science, Flammarion, Paris, 1994
Galileo Galilei, Dialogue sur les deux grands systèmes du monde, Paris, Seuil, 1992
rate research

Read More

In this paper, we study the gravitational field generated by a material straight line around itself. We show the simplicity of the studied field, and we show its relation with the arc of half circle. We discussed also the subject of attracting two spacious straight lines, and we show the absence of relation between the mutual force and the distance. Also we study the field generated by a ray, where we present the different formulas for this field, and we show its geometrics properties, and its relation to a circular arc sees through it. Also studied the previous field lines, and we show that it are parabolas, and we appear by different ways that the equivalent surfaces are parabolic surfaces of revolution.
In this research, we study the material point motion, in the field of a homogeneous and unbounded, material rod. so we present the Hamiltonian formalization of the problem and study the orbits located in the plans perpendicular to the rod. We reve al the proprieties of symmetry of those orbits, and present the conditions to its closure. We also study the material point motion, in the field of a homogeneous and bounded, material rod. We present the Hamiltonian formalization of the problem, reveal the practicality of the plan of symmetry, and we studied the motion in this plan. We reveal the existence of unbounded or bounded planar orbits; some of those are closed. We also reveal that when the angular velocity isn't null, there are not orbits leading to a collision with the rod.
In this search, we study the gravitational field engendered by a material segment around itself. In the beginning, we discuss the concept of the gravitational field generated by arbitrary curve. It turns out that this field depends on the concept of linear mass, and is directly relate to the distance of the position, to which we calculate the field from the tangents of curve, and not from the curve itself. Material segment is a special case of material curves, and characterized by the confusability of all its tangents, that allow simplify the calculations, and find a simplified formula of the field. We end our research by comparing the field of material segment, with a field of appropriate circular arc. Contrary to what it is expected, it appear in the end that the field of material segment is inversely proportional to the distance from that segment, and not to the square of distance
This paper discusses the escape velocity for a limited material distribution in a gravity field. This requeres examining the Newton’s law of gravitation , the gravitational field vector of a limited material distribution in a specific point and po tential function togother with the potential energy. In paper, have proved that potential energy vanished in infinity . This requires also examining Hamilton’s function then we have found the escape velocity of a material point from a sphere’s surface ,when the motion of the material point is vertical , horizontal or oblique . We found the escape velocity for a material point from a disk in the vertical and oblique cases. In paper, we also find out the escape velocity from a ring in both vertical and oblique cases . It is appeared that the escape velocity from the ring identifies with that we get from the sphere case.
In the paper, we study gravitational field generated by a special type of homogeneous material curves that are denoted circumscribed curves. Characteristic state of these curves is the linking of each one of them to a circle, and the circumscribing of him around the circle, or an arc of him, according to a precise meaning. The circumscribed curve consists of arcs of a circle, and straight segments, their right supports are tangents to the circle. In special case, where this curve is a polygon, the sides are tangents to a circle. In this case, we call the polygon, circumscribed polygon. The study shows that the center of the circle, around it, a homogeneous material curve circumscribed, is an equilibrium center.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا