Do you want to publish a course? Click here

Ear segmentation using likelihood skin detector and morphological operations

اقتطاع منطقة الأذن من الصور الجانبية للوجه باستخدام كاشف الجلد المعتمد على الأرجحية و العمليات المورفولوجية

1686   0   38   0 ( 0 )
 Publication date 2012
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This paper proposes a new approach for the segmentation of the side face images to obtain the ear region. The proposed approach is divided into two basic steps: The first step classifies the image pixels into skin and non-skin pixels using likelihood skin detector. This likelihood image is processed by using morphological operations to detect the ear region. In the second step, image containing ear region is isolated from side face image by using one of two methods; the first is based on experiment, while the second is based measurements. The study includes a comparison of the results between the proposed study and previous ones to identify the differences. The proposed approach is applied on a database containing 146 images of 20 persons. These images were taken under different illumination, pose, day, and location variations. The partial occlusion by hair or earing was also taken in account. The results showed that the system achieved a correct segmentation with rate 95.8%.


Artificial intelligence review:
Research summary
تقدم هذه الدراسة طريقة جديدة لتحديد منطقة الأذن واقتطاعها من الصور الجانبية للوجه باستخدام كاشف الجلد المعتمد على الأرجحية والعمليات المورفولوجية. تتضمن الطريقة مرحلتين: الأولى تصنف بكسلات الصورة إلى مناطق جلد ولاجلد باستخدام كاشف الجلد، ثم تُستخدم العمليات المورفولوجية لتحديد منطقة الأذن. في المرحلة الثانية، يتم اقتطاع صورة الأذن باستخدام طريقتين: التجريبية والقياسية. تم اختبار الطريقة على قاعدة بيانات مكونة من 146 صورة لـ 20 شخصًا، مع مراعاة تغيرات الإضاءة والموقع وتغطية الأذن جزئيًا بالشعر أو الأقراط. حققت الطريقة نسبة نجاح بلغت 95.8%.
Critical review
دراسة نقدية: تعتبر هذه الدراسة خطوة مهمة في مجال التعرف على الأشخاص باستخدام الأذن، حيث قدمت طريقة مبتكرة تعتمد على كاشف الجلد والعمليات المورفولوجية. ومع ذلك، يمكن تحسين الدراسة من خلال توسيع قاعدة البيانات لتشمل مزيدًا من الصور والأشخاص من مختلف الأعمار والخلفيات. كما يمكن تحسين دقة النظام من خلال استخدام تقنيات تعلم الآلة المتقدمة لتحسين عملية تصنيف بكسلات الجلد. بالإضافة إلى ذلك، يمكن تحسين النظام ليكون أكثر مقاومة لتغيرات الإضاءة والتداخلات الأخرى مثل الأقراط والشعر.
Questions related to the research
  1. ما هي المراحل الأساسية للطريقة المقترحة في الدراسة؟

    تتضمن الطريقة مرحلتين أساسيتين: الأولى تصنف بكسلات الصورة إلى مناطق جلد ولاجلد باستخدام كاشف الجلد المعتمد على الأرجحية، ثم تُستخدم العمليات المورفولوجية لتحديد منطقة الأذن. في المرحلة الثانية، يتم اقتطاع صورة الأذن باستخدام طريقتين: التجريبية والقياسية.

  2. ما هي نسبة نجاح الطريقة المقترحة في اقتطاع صورة الأذن؟

    حققت الطريقة نسبة نجاح بلغت 95.8% في اقتطاع صورة الأذن من الصور الجانبية للوجه.

  3. ما هي العوامل التي تم أخذها بعين الاعتبار أثناء اختبار الطريقة؟

    تم أخذ عدة عوامل بعين الاعتبار أثناء اختبار الطريقة، منها تغيرات الإضاءة، الموقع، تغطية الأذن جزئيًا بالشعر أو الأقراط، واختلاف أيام التصوير ومواقعه.

  4. ما هي الطرق المستخدمة لاقتطاع صورة الأذن في المرحلة الثانية من الطريقة المقترحة؟

    تم استخدام طريقتين لاقتطاع صورة الأذن في المرحلة الثانية: الأولى تعتمد على التجريب، والثانية تعتمد على القياس.


References used
CIARAN O’ CONAIRE, NOEL E. O'CONNOR, and ALAN F. SMEATON. Detector adaptation by maximising agreement between independent data sources, In CVPR. IEEE Computer Society, 2007
ALI, M., JAVED, M. Y., and BASIT, A., Ear Recognition Using Wavelets, Proceedings of Image and Vision Computing New Zealand, 2007, 83–86
SALEH, M., FADEL, S. and ABBOTT, L., Ears as a Biometric for Human Recognition, ICCTA, September 2006, 5-7
DARAMOLA, S. A., OLUWANINYO, O. D., Automatic Ear Recognition System using Back Propagation Neural Network, International Journal of Video & Image Processing and Network Security IJVIPNS-IJENS, Vol: 11 No: 01, February 2011, 28-32
rate research

Read More

Failure detection plays a central role in the engineering of distributed systems. Furthermore, many applications have timing constraints and require failure detectors that provide quality of service (QoS) with some quantitative timeliness guarante es. Therefore, they need failure detectors that are fast and accurate. Failure detectors are oracles that provide information about process crashes , they are an important abstraction for fault tolerance in distributed systems. Although current failure detectors theory provides great generality and expressiveness, it also possess significant challenges in developing a robust hierarchy of failure detectors. In this paper, we propose an implementation of failure detectors. this implementation uses a dual model of heartbeat and interaction. First, the heartbeat model is adopted to shorten the detection time. if the detecting process does not receive the heartbeat message in the expected time, the interaction model is then used to check the process further.
this paper, we generalize the study of the mathematical operations over (2x2), (3x3) and (4x4) real matrices by using the complex numbers which was introduced by (Ide. 1990,1993,1996), for any real matrices (nxm). This method of arithmetic operati ons of matrices by using the complex numbers and its properties is simple, easy and fast to program on computer. The importance of this method appears in the applications of problems which use the arithmetic operations of matrices, especially in physics.
This Paper offers an innovative way for auto segmentation of the fetal head in ultrasound US images. There is high amount of noise in US images, which it affects the visual appearance of the area of head. The research depends on auto segmentation mechanism without the need for user intervention at any stage of proposed method, so this is what makes segmentation process is difficult and important at the same, because the weakness of the edges and not fully enclosed in the desired region. We relied on a Level Set method to segment the head area, after determining the initial contour automatically by the Region Properties Function. The proposed method proves effective in the head area segmentation without being influenced by noise or the existence of discontinuities in the edges of the head, despite the absence of a pre-processing stage in a series of steps applied to several ultrasound images in different sizes and sources. The last step is to calculate the secondary diameter of the output ellipse (the fetal head sector) depending on the properties of the region, and this final measurement represents the Bi Parietal Diameter BPD, an important measure enables the physician to assess gestational age and determine the birth of the fetus date. Segmentation result has been authenticated based on similarity criteria, and the final measurement accuracy has been compared with manual measurements carried out by a specialist. The comparison results showed the effectiveness of the proposed algorithm and its success by up to 98%.
This paper presents a method for finding online adaptive optimal controllers for continuous-time linear systems without knowing the system dynamical matrices. The proposed method employs one of Intelligent Operations Research Techniques, this tech nique is the adaptive dynamic programming, to iteratively solve the algebraic Riccati equation using the online information of state and input, without requiring the a priori knowledge of the system dynamics. In addition, all iterations can be conducted by using repeatedly the same state and input information on some fixed time intervals. A practical online algorithm is developed in this paper, and is applied to the controller design for a turbocharged diesel engine with exhaust gas recirculation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا