Do you want to publish a course? Click here

Handwritten Signature Verification using Statistical Functions for Signature Image

التحقق من التواقيع اليدوية باستخدام التوابع الإحصائية لصورة التوقيع

2942   3   31   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This research suggests a new method that aims to verify the manual signature image which is written by person, and specify whether this signature back to this person or that forged signature. This was done by extracting geometric features of the signature image and applying statistical functions on them as a way to verify the signature of that person. The features from the signature image have been extracted on many stages so a signature image has been transformed from the gray scale to binary format, and then extracting the statistical features from the original signature image which is the maximum value from the most repeated values in the ones' coordination line that determine the signature shape, in addition to the number of ones which also determine the signature shape. Finally two ranges have been identified for the values accepted for original signature image. By the same way, statistical features have been extracted from the foreign signature image and tested if they aggregate within the specified domain of acceptable values. This research also includes the results of the proposed approach that compared with the previous methods in this scope. The proposed method has been tested to the data base consisting of 16200 signatures back to 300 persons, and as a result the signature image has been verified with a good percentage.


Artificial intelligence review:
Research summary
يقترح البحث طريقة جديدة للتحقق من التوقيعات اليدوية باستخدام التوابع الإحصائية لصورة التوقيع. تعتمد الطريقة على استخراج سمات هندسية من صورة التوقيع وتحليلها إحصائيًا للتحقق من صحة التوقيع. يتم تحويل صورة التوقيع من الصيغة الرمادية إلى الصيغة الثنائية، ثم يتم استخراج الخصائص الإحصائية للتوقيع الأصلي، مثل القيم الأكثر تكرارًا وعدد الواحدات التي تحدد شكل التوقيع. يتم تحديد مجالين للقيم المقبولة للتوقيع الأصلي، ثم تُختبر التواقيع المزورة للتحقق من انتمائها لهذه المجالات. تم اختبار الطريقة باستخدام قاعدة بيانات تحتوي على 16200 توقيع من 300 شخص، وأظهرت النتائج نسبة تحقق جيدة. يقارن البحث أيضًا نتائج الطريقة المقترحة مع الطرق السابقة في هذا المجال.
Critical review
دراسة نقدية: يعتبر البحث خطوة مهمة في مجال التحقق من التوقيعات اليدوية باستخدام التوابع الإحصائية، حيث يقدم طريقة جديدة ومبتكرة. ومع ذلك، يمكن أن تكون هناك بعض النقاط التي تحتاج إلى تحسين. على سبيل المثال، قد يكون من المفيد استخدام تقنيات معالجة الصور الأكثر تعقيدًا مثل الشبكات العصبية لتحسين دقة النتائج. كما أن الاعتماد على قاعدة بيانات واحدة قد لا يكون كافيًا لتعميم النتائج على نطاق أوسع. بالإضافة إلى ذلك، يمكن أن تكون هناك حاجة إلى دراسة تأثير العوامل البيئية مثل الإضاءة وجودة الصورة على دقة النظام.
Questions related to the research
  1. ما هي الطريقة المقترحة في البحث للتحقق من التوقيعات اليدوية؟

    الطريقة المقترحة تعتمد على استخراج سمات هندسية من صورة التوقيع وتحليلها إحصائيًا للتحقق من صحة التوقيع.

  2. ما هي الخطوات الرئيسية لاستخراج السمات من صورة التوقيع؟

    الخطوات تشمل تحويل صورة التوقيع من الصيغة الرمادية إلى الصيغة الثنائية، ثم استخراج القيم الأكثر تكرارًا وعدد الواحدات التي تحدد شكل التوقيع.

  3. ما هي قاعدة البيانات المستخدمة في اختبار الطريقة المقترحة؟

    تم استخدام قاعدة بيانات تحتوي على 16200 توقيع موزعة على 300 شخص.

  4. ما هي النتائج التي توصل إليها البحث؟

    أظهرت النتائج نسبة تحقق جيدة عند استخدام الطريقة المقترحة للتحقق من التوقيعات اليدوية.


References used
Shirdhonkar,M.S; Kokare,M .Off-Line Handwritten Signature Identification Using Rotated Complex Wavelet Filters, International Journal of Computer Science Issues, Vol. 8, Issue 1, January 2011
Arya,M.S; Inamdar,V.S . A Preliminary Study on Various Off-line Handwritten Signature Verification Approaches, International Journal of Computer Applications, Vol. 1, 2010
Sisodia,K; Anand,M.S. Off-line Handwritten Signature Verification using Artificial Neural Network Classifier , International Journal of Recent Trends in Engineering, Vol 2, No. 2, November 2009, 205-207
Ferrer,M.A; Travieso,C.M; Alonso,J.B .Offline Signature Verification Based on Pseudo-Cepstral Coefficients, International Conference on Document Analysis and Recognition , Spain, 2009
Biswas,S; Kim,T; Bhattacharyya,D. Features Extraction and Verification of Signature Image using Clustering Technique , International Journal of Smart Home Vol.4, July, 2010, 43-56
rate research

Read More

For decades, published Automatic Signature Verification (ASV) works depended on using one feature set. Some researchers selected this feature set based on their experience, and some others selected it using some feature selection algorithms that can select the best feature set (bfs). In practical systems, the documents containing the signatures could be noisy, and recognition of check writer in multi-signatory accounts is required. Due to the error caused by such requirements and data quality, improving the performance of ASV becomes a necessity. In this paper, a new technique for ASV decision making using Multi-Sets of Features is introduced. The experimental results have shown that the introduced technique gives important improvement in forgery detection and in the overall performance of the system.
There are many of Formal Methods for testing security protocols detecting being safe or not. Including Avispa, Casper, ProVerif, Scyther. Previously a comparisons using two of mentioned methods (ProVerif, Scyther). In this, research a comparison b etween the four mentioned methods in terms of the same used parameters in the previous comparison: working style, the modeling language, user interface, input, and output. As a result, the user provided with options to choose the appropriate method depending on the desired parameter. Six different of security protocols have been tested and finally the results have been compared; these protocols are Kao Chow Authentication Protocol, 3-D Secure Protocol, Needham-Schroeder Public Key Protocol, Diffie–Hellman key exchange, Andrew Secure RPC Protocol, and Challenge Handshake Authentication Protocol
In this paper, we propose a novel fact checking and verification system to check claims against Wikipedia content. Our system retrieves relevant Wikipedia pages using Anserini, uses BERT-large-cased question answering model to select correct evidence , and verifies claims using XLNET natural language inference model by comparing it with the evidence. Table cell evidence is obtained through looking for entity-matching cell values and TAPAS table question answering model. The pipeline utilizes zero-shot capabilities of existing models and all the models used in the pipeline requires no additional training. Our system got a FEVEROUS score of 0.06 and a label accuracy of 0.39 in FEVEROUS challenge.
مفهوم التابع لعدة متحولات التمثيل البياني لتابع لمتحولين نهايات التوابع لمتحولين واستمرارها النهايات النهايات التكرارية الاستمرار المشتقات الجزئية التفاضل التام التفاضل التام من المراتب العليا الجاكوبي (Jacobian) التوابع الشعاعية (Vec tor functions) المنحنيات الفراغية (Space curves) السطوح (Surfaces) المؤثر التفاضلي الموجه (Differential vector operator) تدرج التابع السلمي (Gradient of scalar function) خواص شعاع التدرج (Properties of the gradient) تباعد الحقل الشعاعي(Divergence of vector field) المعنى الفيزيائي للتباعد دوران الحقل الشعاعي (Curl of vector field) المعنى الهندسي للدوران
We present a dataset, DanFEVER, intended for multilingual misinformation research. The dataset is in Danish and has the same format as the well-known English FEVER dataset. It can be used for testing methods in multilingual settings, as well as for creating models in production for the Danish language.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا