Do you want to publish a course? Click here

A Fact Checking and Verification System for FEVEROUS Using a Zero-Shot Learning Approach

فحص الحقائق ونظام التحقق من أجل Fnverous باستخدام نهج التعلم بالرصاص صفر

404   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we propose a novel fact checking and verification system to check claims against Wikipedia content. Our system retrieves relevant Wikipedia pages using Anserini, uses BERT-large-cased question answering model to select correct evidence, and verifies claims using XLNET natural language inference model by comparing it with the evidence. Table cell evidence is obtained through looking for entity-matching cell values and TAPAS table question answering model. The pipeline utilizes zero-shot capabilities of existing models and all the models used in the pipeline requires no additional training. Our system got a FEVEROUS score of 0.06 and a label accuracy of 0.39 in FEVEROUS challenge.

References used
https://aclanthology.org/

rate research

Read More

Tables provide valuable knowledge that can be used to verify textual statements. While a number of works have considered table-based fact verification, direct alignments of tabular data with tokens in textual statements are rarely available. Moreover , training a generalized fact verification model requires abundant labeled training data. In this paper, we propose a novel system to address these problems. Inspired by counterfactual causality, our system identifies token-level salience in the statement with probing-based salience estimation. Salience estimation allows enhanced learning of fact verification from two perspectives. From one perspective, our system conducts masked salient token prediction to enhance the model for alignment and reasoning between the table and the statement. From the other perspective, our system applies salience-aware data augmentation to generate a more diverse set of training instances by replacing non-salient terms. Experimental results on TabFact show the effective improvement by the proposed salience-aware learning techniques, leading to the new SOTA performance on the benchmark.
In this paper, we study the problem of recognizing compositional attribute-object concepts within the zero-shot learning (ZSL) framework. We propose an episode-based cross-attention (EpiCA) network which combines merits of cross-attention mechanism a nd episode-based training strategy to recognize novel compositional concepts. Firstly, EpiCA bases on cross-attention to correlate conceptvisual information and utilizes the gated pooling layer to build contextualized representations for both images and concepts. The updated representations are used for a more indepth multi-modal relevance calculation for concept recognition. Secondly, a two-phase episode training strategy, especially the ransductive phase, is adopted to utilize unlabeled test examples to alleviate the low-resource learning problem. Experiments on two widelyused zero-shot compositional learning (ZSCL) benchmarks have demonstrated the effectiveness of the model compared with recent approaches on both conventional and generalized ZSCL settings.
The task of verifying the truthfulness of claims in textual documents, or fact-checking, has received significant attention in recent years. Many existing evidence-based factchecking datasets contain synthetic claims and the models trained on these d ata might not be able to verify real-world claims. Particularly few studies addressed evidence-based fact-checking of health-related claims that require medical expertise or evidence from the scientific literature. In this paper, we introduce HEALTHVER, a new dataset for evidence-based fact-checking of health-related claims that allows to study the validity of real-world claims by evaluating their truthfulness against scientific articles. Using a three-step data creation method, we first retrieved real-world claims from snippets returned by a search engine for questions about COVID-19. Then we automatically retrieved and re-ranked relevant scientific papers using a T5 relevance-based model. Finally, the relations between each evidence statement and the associated claim were manually annotated as SUPPORT, REFUTE and NEUTRAL. To validate the created dataset of 14,330 evidence-claim pairs, we developed baseline models based on pretrained language models. Our experiments showed that training deep learning models on real-world medical claims greatly improves performance compared to models trained on synthetic and open-domain claims. Our results and manual analysis suggest that HEALTHVER provides a realistic and challenging dataset for future efforts on evidence-based fact-checking of health-related claims. The dataset, source code, and a leaderboard are available at https://github.com/sarrouti/healthver.
Table-based fact verification task aims to verify whether the given statement is supported by the given semi-structured table. Symbolic reasoning with logical operations plays a crucial role in this task. Existing methods leverage programs that conta in rich logical information to enhance the verification process. However, due to the lack of fully supervised signals in the program generation process, spurious programs can be derived and employed, which leads to the inability of the model to catch helpful logical operations. To address the aforementioned problems, in this work, we formulate the table-based fact verification task as an evidence retrieval and reasoning framework, proposing the Logic-level Evidence Retrieval and Graph-based Verification network (LERGV). Specifically, we first retrieve logic-level program-like evidence from the given table and statement as supplementary evidence for the table. After that, we construct a logic-level graph to capture the logical relations between entities and functions in the retrieved evidence, and design a graph-based verification network to perform logic-level graph-based reasoning based on the constructed graph to classify the final entailment relation. Experimental results on the large-scale benchmark TABFACT show the effectiveness of the proposed approach.
Stance detection on social media can help to identify and understand slanted news or commentary in everyday life. In this work, we propose a new model for zero-shot stance detection on Twitter that uses adversarial learning to generalize across topic s. Our model achieves state-of-the-art performance on a number of unseen test topics with minimal computational costs. In addition, we extend zero-shot stance detection to topics not previously considered, highlighting future directions for zero-shot transfer.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا