مستوحاة من اختيار ميزة المعلومات المتبادلة (MI) في الانحدار اللوجستي، في هذه الورقة، نقترح تشذيب الطبقة المستندة إلى MI: لكل طبقة من الشبكة العصبية متعددة الطبقات، الخلايا العصبية ذات القيم العالية في MI فيما يتعلق يتم الحفاظ على الخلايا العصبية المحفوظة في الطبقة العليا. بدءا من أعلى طبقة SoftMax، تتقلص الطبقة الحكيمة في الأزياء من أعلى إلى أسفل حتى تصل إلى طبقة تضمين الكلمة السفلي. تقدم استراتيجية التذكير المقترحة مزايا تقنيات تشذيب الوزن: (1) يتجنب الوصول إلى الذاكرة غير النظامية لأن التمثيلات والمصفوفات يمكن الضغط عليها في نظرائها الأصغر ولكن الكثيف، مما يؤدي إلى زيادة السرعة؛ (2) بطريقة تشذيب من أعلى إلى أسفل، تعمل الطريقة المقترحة من منظور عالمي أكثر استنادا إلى إشارات تدريبية في الطبقة العليا، والحكومة كل طبقة من خلال نشر تأثير الإشارات العالمية من خلال الطبقات، مما يؤدي إلى أداء أفضل في نفس مستوى Sparsity. تظهر تجارب واسعة أنه على مستوى Sparsity نفسه، فإن الاستراتيجية المقترحة تقدم كل من التطورات العالية والأداء أعلى من طرق تشذيب الوزن (على سبيل المثال، تشذيب الحجم، تقليم الحركة).
Inspired by mutual information (MI) based feature selection in SVMs and logistic regression, in this paper, we propose MI-based layer-wise pruning: for each layer of a multi-layer neural network, neurons with higher values of MI with respect to preserved neurons in the upper layer are preserved. Starting from the top softmax layer, layer-wise pruning proceeds in a top-down fashion until reaching the bottom word embedding layer. The proposed pruning strategy offers merits over weight-based pruning techniques: (1) it avoids irregular memory access since representations and matrices can be squeezed into their smaller but dense counterparts, leading to greater speedup; (2) in a manner of top-down pruning, the proposed method operates from a more global perspective based on training signals in the top layer, and prunes each layer by propagating the effect of global signals through layers, leading to better performances at the same sparsity level. Extensive experiments show that at the same sparsity level, the proposed strategy offers both greater speedup and higher performances than weight-based pruning methods (e.g., magnitude pruning, movement pruning).
References used
https://aclanthology.org/
Due to the popularity of intelligent dialogue assistant services, speech emotion recognition has become more and more important. In the communication between humans and machines, emotion recognition and emotion analysis can enhance the interaction be
Difficult samples of the minority class in imbalanced text classification are usually hard to be classified as they are embedded into an overlapping semantic region with the majority class. In this paper, we propose a Mutual Information constrained S
As part of the FEVEROUS shared task, we developed a robust and finely tuned architecture to handle the joint retrieval and entailment on text data as well as structured data like tables. We proposed two training schemes to tackle the hurdles inherent
We focus on dialog models in the context of clinical studies where the goal is to help gather, in addition to the close information collected based on a questionnaire, serendipitous information that is medically relevant. To promote user engagement a
In this work, we are proposing a new model for knowledge discovery in database (KDD) named "SCRUM-BI". It based on SCRUM agile methodology to enhance the way of building Business Intelligence and Data Mining applications. This model characterized as