كجزء من المهمة المشتركة الحميرة، قمنا بتطوير بنية قوية ومضبوطة بدقة للتعامل مع الاسترجاع المشترك وتتبعها على البيانات النصية وكذلك البيانات الهيكلية مثل الجداول.اقترحنا خططين تدريبي لمعالجة العقبات المتأصلة لمجموعات البيانات متعددة الوسائط متعددة القفزات.أول واحد يسمح بإجراء استرجاع قوي لمجموعات الأدلة الكاملة، في حين أن المرء الثاني يتيح الاستيطاط الاستفادة الكاملة من مدخلات الأدلة الصاخبة.بالإضافة إلى ذلك، كشف عملنا عن رؤى مهمة وسيلة بحثية محتملة للتحسين في المستقبل على هذا النوع من مجموعة البيانات.في التقييم الأولي حول مجموعة اختبار المهام المشتركة الحميرة، يحقق نظامنا 0.271 درجة حمامة، مع استدعاء الأدلة 0.4258 ودقة استقامة 0.5607.
As part of the FEVEROUS shared task, we developed a robust and finely tuned architecture to handle the joint retrieval and entailment on text data as well as structured data like tables. We proposed two training schemes to tackle the hurdles inherent to multi-hop multi-modal datasets. The first one allows having a robust retrieval of full evidence sets, while the second one enables entailment to take full advantage of noisy evidence inputs. In addition, our work has revealed important insights and potential avenue of research for future improvement on this kind of dataset. In preliminary evaluation on the FEVEROUS shared task test set, our system achieves 0.271 FEVEROUS score, with 0.4258 evidence recall and 0.5607 entailment accuracy.
References used
https://aclanthology.org/
The task of verifying the truthfulness of claims in textual documents, or fact-checking, has received significant attention in recent years. Many existing evidence-based factchecking datasets contain synthetic claims and the models trained on these d
Fact Extraction and VERification (FEVER) is a recently introduced task that consists of the following subtasks (i) document retrieval, (ii) sentence retrieval, and (iii) claim verification. In this work, we focus on the subtask of sentence retrieval.
Recent question answering and machine reading benchmarks frequently reduce the task to one of pinpointing spans within a certain text passage that answers the given question. Typically, these systems are not required to actually understand the text o
In this paper, we propose a novel fact checking and verification system to check claims against Wikipedia content. Our system retrieves relevant Wikipedia pages using Anserini, uses BERT-large-cased question answering model to select correct evidence
Inspired by mutual information (MI) based feature selection in SVMs and logistic regression, in this paper, we propose MI-based layer-wise pruning: for each layer of a multi-layer neural network, neurons with higher values of MI with respect to prese