Do you want to publish a course? Click here

Semantic Novelty Detection in Natural Language Descriptions

كشف الجدة الدلالي في أوصاف اللغة الطبيعية

344   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper proposes to study a fine-grained semantic novelty detection task, which can be illustrated with the following example. It is normal that a person walks a dog in the park, but if someone says A man is walking a chicken in the park'', it is novel. Given a set of natural language descriptions of normal scenes, we want to identify descriptions of novel scenes. We are not aware of any existing work that solves the problem. Although existing novelty or anomaly detection algorithms are applicable, since they are usually topic-based, they perform poorly on our fine-grained semantic novelty detection task. This paper proposes an effective model (called GAT-MA) to solve the problem and also contributes a new dataset. Experimental evaluation shows that GAT-MA outperforms 11 baselines by large margins.



References used
https://aclanthology.org/
rate research

Read More

Text generation from semantic graphs is traditionally performed with deterministic methods, which generate a unique description given an input graph. However, the generation problem admits a range of acceptable textual outputs, exhibiting lexical, sy ntactic and semantic variation. To address this disconnect, we present two main contributions. First, we propose a stochastic graph-to-text model, incorporating a latent variable in an encoder-decoder model, and its use in an ensemble. Second, to assess the diversity of the generated sentences, we propose a new automatic evaluation metric which jointly evaluates output diversity and quality in a multi-reference setting. We evaluate the models on WebNLG datasets in English and Russian, and show an ensemble of stochastic models produces diverse sets of generated sentences while, retaining similar quality to state-of-the-art models.
We ask subjects whether they perceive as human-produced a bunch of texts, some of which are actually human-written, while others are automatically generated. We use this data to fine-tune a GPT-2 model to push it to generate more human-like texts, an d observe that this fine-tuned model produces texts that are indeed perceived more human-like than the original model. Contextually, we show that our automatic evaluation strategy well correlates with human judgements. We also run a linguistic analysis to unveil the characteristics of human- vs machine-perceived language.
Counterfactuals are a valuable means for understanding decisions made by ML systems. However, the counterfactuals generated by the methods currently available for natural language text are either unrealistic or introduce imperceptible changes. We pro pose CounterfactualGAN: a method that combines a conditional GAN and the embeddings of a pretrained BERT encoder to model-agnostically generate realistic natural language text counterfactuals for explaining regression and classification tasks. Experimental results show that our method produces perceptibly distinguishable counterfactuals, while outperforming four baseline methods on fidelity and human judgments of naturalness, across multiple datasets and multiple predictive models.
Knowledge-enriched text generation poses unique challenges in modeling and learning, driving active research in several core directions, ranging from integrated modeling of neural representations and symbolic information in the sequential/hierarchica l/graphical structures, learning without direct supervisions due to the cost of structured annotation, efficient optimization and inference with massive and global constraints, to language grounding on multiple modalities, and generative reasoning with implicit commonsense knowledge and background knowledge. In this tutorial we will present a roadmap to line up the state-of-the-art methods to tackle these challenges on this cutting-edge problem. We will dive deep into various technical components: how to represent knowledge, how to feed knowledge into a generation model, how to evaluate generation results, and what are the remaining challenges?
Recent studies show that many NLP systems are sensitive and vulnerable to a small perturbation of inputs and do not generalize well across different datasets. This lack of robustness derails the use of NLP systems in real-world applications. This tut orial aims at bringing awareness of practical concerns about NLP robustness. It targets NLP researchers and practitioners who are interested in building reliable NLP systems. In particular, we will review recent studies on analyzing the weakness of NLP systems when facing adversarial inputs and data with a distribution shift. We will provide the audience with a holistic view of 1) how to use adversarial examples to examine the weakness of NLP models and facilitate debugging; 2) how to enhance the robustness of existing NLP models and defense against adversarial inputs; and 3) how the consideration of robustness affects the real-world NLP applications used in our daily lives. We will conclude the tutorial by outlining future research directions in this area.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا