تقترح هذه الورقة دراسة مهمة للكشف عن الجدة من الدلالات الدلالية الرائعة، والتي يمكن توضيحها مع المثال التالي.من الطبيعي أن يمشي شخص كلب في الحديقة، ولكن إذا قال شخص ما إن الرجل يمشي في الدجاج في الحديقة "، فهو رواية.بالنظر إلى مجموعة من الأوصاف اللغوية الطبيعية للمشاهد العادية، نريد تحديد أوصاف المشاهد الرواية.نحن لسنا على علم بأي عمل موجود يحل المشكلة.على الرغم من أن خوارزميات الكشف عن الجدة أو الشذوذ الحالية قابلة للتطبيق، نظرا لأنها عادة ما تكون قائمة على الموضوعات، فإنها تؤدي بشكل سيئ في مهمة الكشف عن الجدة الدلالية الدقيقة.تقترح هذه الورقة نموذجا فعالا (يسمى GAT-MA) لحل المشكلة ويساهم أيضا في مجموعة بيانات جديدة.يوضح التقييم التجريبي أن GAT-MA يتفوق على 11 خطوط رئيسية من الهوامش الكبيرة.
This paper proposes to study a fine-grained semantic novelty detection task, which can be illustrated with the following example. It is normal that a person walks a dog in the park, but if someone says A man is walking a chicken in the park'', it is novel. Given a set of natural language descriptions of normal scenes, we want to identify descriptions of novel scenes. We are not aware of any existing work that solves the problem. Although existing novelty or anomaly detection algorithms are applicable, since they are usually topic-based, they perform poorly on our fine-grained semantic novelty detection task. This paper proposes an effective model (called GAT-MA) to solve the problem and also contributes a new dataset. Experimental evaluation shows that GAT-MA outperforms 11 baselines by large margins.
References used
https://aclanthology.org/
Text generation from semantic graphs is traditionally performed with deterministic methods, which generate a unique description given an input graph. However, the generation problem admits a range of acceptable textual outputs, exhibiting lexical, sy
We ask subjects whether they perceive as human-produced a bunch of texts, some of which are actually human-written, while others are automatically generated. We use this data to fine-tune a GPT-2 model to push it to generate more human-like texts, an
Counterfactuals are a valuable means for understanding decisions made by ML systems. However, the counterfactuals generated by the methods currently available for natural language text are either unrealistic or introduce imperceptible changes. We pro
Knowledge-enriched text generation poses unique challenges in modeling and learning, driving active research in several core directions, ranging from integrated modeling of neural representations and symbolic information in the sequential/hierarchica
Recent studies show that many NLP systems are sensitive and vulnerable to a small perturbation of inputs and do not generalize well across different datasets. This lack of robustness derails the use of NLP systems in real-world applications. This tut