أدوار الأحرف النمطية المعروفة أيضا باسم Archetys أو Dramatis الشخصية - تلعب وظيفة مهمة في الروايات: إنها تسهل الاتصالات الفعالة مع حزم الخصائص والجمعيات الافتراضية وتخفيف فهم أدوار تلك الشخصيات في السرد الشامل. نقدم نهج تجميع K-Wi يعني غير المدعوم بالكامل للتعلم الأدوار النمطية التي تعطى معلومات مؤامرة هيكلة فقط. نوضح هذه التقنية في نظرية فلاديمير بروتب الهيكلية للفولكلتال الروسية (تم التقاطها في كوربوس فوندنر الموسعة، مع 46 حكايات)، والتي تبين أن نهجنا يمكن أن تحفز ستة من أصل سبعة من شخصيات الدكتور الدافعة مع تدابير F1 تصل إلى 0.70 (0.58 متوسط) مع فئة إضافية لشخصيات طفيفة. لقد استكشفنا مجموعات ميزة مختلفة وتغيرات طريقة تقييم الكتلة. تشتمل مجموعة الميزات الأفضل أداء على وظائف المؤامرة و Unigrams و TF-IDF الأوزان و Adgeddings على رؤوس سلسلة Aquerence. أدوار المذكورة في كثير من الأحيان (بطل أو شرير)، أو أنماط مؤامرة مميزة بوضوح (الأميرة) متباينة بقوة أكثر من أدوار أقل تواترا أو متميزة (المرسل، المساعد، المانح). يشير تحليل الأخطاء التفصيلي إلى أن جودة السلسلة الأساسية ووظائف المؤامرة تتكلم حاسمة لهذه المهمة. نحن نقدم جميع بياناتنا ورمزنا لاستنساخ.
Stereotypical character roles-also known as archetypes or dramatis personae-play an important function in narratives: they facilitate efficient communication with bundles of default characteristics and associations and ease understanding of those characters' roles in the overall narrative. We present a fully unsupervised k-means clustering approach for learning stereotypical roles given only structural plot information. We demonstrate the technique on Vladimir Propp's structural theory of Russian folktales (captured in the extended ProppLearner corpus, with 46 tales), showing that our approach can induce six out of seven of Propp's dramatis personae with F1 measures of up to 0.70 (0.58 average), with an additional category for minor characters. We have explored various feature sets and variations of a cluster evaluation method. The best-performing feature set comprises plot functions, unigrams, tf-idf weights, and embeddings over coreference chain heads. Roles that are mentioned more often (Hero, Villain), or have clearly distinct plot patterns (Princess) are more strongly differentiated than less frequent or distinct roles (Dispatcher, Helper, Donor). Detailed error analysis suggests that the quality of the coreference chain and plot functions annotations are critical for this task. We provide all our data and code for reproducibility.
References used
https://aclanthology.org/
We present an interactive Plotting Agent, a system that enables users to directly manipulate plots using natural language instructions within an interactive programming environment. The Plotting Agent maps language to plot updates. We formulate this
Probabilistic context-free grammars (PCFGs) with neural parameterization have been shown to be effective in unsupervised phrase-structure grammar induction. However, due to the cubic computational complexity of PCFG representation and parsing, previo
The Current Security of the Arab countries is despondent, as it is
engulfed in a vicious circle of instability and lack of security. Fears of
loss of coexistence, social peace and internal security are renewed every
day. Security is a social deman
We present Graformer, a novel Transformer-based encoder-decoder architecture for graph-to-text generation. With our novel graph self-attention, the encoding of a node relies on all nodes in the input graph - not only direct neighbors - facilitating t
State-of-the-art approaches to spelling error correction problem include Transformer-based Seq2Seq models, which require large training sets and suffer from slow inference time; and sequence labeling models based on Transformer encoders like BERT, wh