Do you want to publish a course? Click here

Hierarchical Character Tagger for Short Text Spelling Error Correction

الطابع الهرمي Tagger لتصحيح الأخطاء الإملائي النصي

247   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

State-of-the-art approaches to spelling error correction problem include Transformer-based Seq2Seq models, which require large training sets and suffer from slow inference time; and sequence labeling models based on Transformer encoders like BERT, which involve token-level label space and therefore a large pre-defined vocabulary dictionary. In this paper we present a Hierarchical Character Tagger model, or HCTagger, for short text spelling error correction. We use a pre-trained language model at the character level as a text encoder, and then predict character-level edits to transform the original text into its error-free form with a much smaller label space. For decoding, we propose a hierarchical multi-task approach to alleviate the issue of long-tail label distribution without introducing extra model parameters. Experiments on two public misspelling correction datasets demonstrate that HCTagger is an accurate and much faster approach than many existing models.

References used
https://aclanthology.org/
rate research

Read More

This paper investigates how to correct Chinese text errors with types of mistaken, missing and redundant characters, which are common for Chinese native speakers. Most existing models based on detect-correct framework can correct mistaken characters, but cannot handle missing or redundant characters due to inconsistency between model inputs and outputs. Although Seq2Seq-based or sequence tagging methods provide solutions to the three error types and achieved relatively good results in English context, they do not perform well in Chinese context according to our experiments. In our work, we propose a novel alignment-agnostic detect-correct framework that can handle both text aligned and non-aligned situations and can serve as a cold start model when no annotation data are provided. Experimental results on three datasets demonstrate that our method is effective and achieves a better performance than most recent published models.
Traditionally, character-level transduction problems have been solved with finite-state models designed to encode structural and linguistic knowledge of the underlying process, whereas recent approaches rely on the power and flexibility of sequence-t o-sequence models with attention. Focusing on the less explored unsupervised learning scenario, we compare the two model classes side by side and find that they tend to make different types of errors even when achieving comparable performance. We analyze the distributions of different error classes using two unsupervised tasks as testbeds: converting informally romanized text into the native script of its language (for Russian, Arabic, and Kannada) and translating between a pair of closely related languages (Serbian and Bosnian). Finally, we investigate how combining finite-state and sequence-to-sequence models at decoding time affects the output quantitatively and qualitatively.
Short text classification is a fundamental task in natural language processing. It is hard due to the lack of context information and labeled data in practice. In this paper, we propose a new method called SHINE, which is based on graph neural networ k (GNN), for short text classification. First, we model the short text dataset as a hierarchical heterogeneous graph consisting of word-level component graphs which introduce more semantic and syntactic information. Then, we dynamically learn a short document graph that facilitates effective label propagation among similar short texts. Thus, comparing with existing GNN-based methods, SHINE can better exploit interactions between nodes of the same types and capture similarities between short texts. Extensive experiments on various benchmark short text datasets show that SHINE consistently outperforms state-of-the-art methods, especially with fewer labels.
Historical corpora are known to contain errors introduced by OCR (optical character recognition) methods used in the digitization process, often said to be degrading the performance of NLP systems. Correcting these errors manually is a time-consuming process and a great part of the automatic approaches have been relying on rules or supervised machine learning. We build on previous work on fully automatic unsupervised extraction of parallel data to train a character-based sequence-to-sequence NMT (neural machine translation) model to conduct OCR error correction designed for English, and adapt it to Finnish by proposing solutions that take the rich morphology of the language into account. Our new method shows increased performance while remaining fully unsupervised, with the added benefit of spelling normalisation. The source code and models are available on GitHub and Zenodo.
Neural Machine Translation models are sensitive to noise in the input texts, such as misspelled words and ungrammatical constructions. Existing robustness techniques generally fail when faced with unseen types of noise and their performance degrades on clean texts. In this paper, we focus on three types of realistic noise that are commonly generated by humans and introduce the idea of visual context to improve translation robustness for noisy texts. In addition, we describe a novel error correction training regime that can be used as an auxiliary task to further improve translation robustness. Experiments on English-French and English-German translation show that both multimodal and error correction components improve model robustness to noisy texts, while still retaining translation quality on clean texts.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا