Do you want to publish a course? Click here

Interactive Plot Manipulation using Natural Language

معالجة المؤامرة التفاعلية باستخدام اللغة الطبيعية

413   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We present an interactive Plotting Agent, a system that enables users to directly manipulate plots using natural language instructions within an interactive programming environment. The Plotting Agent maps language to plot updates. We formulate this problem as a slot-based task-oriented dialog problem, which we tackle with a sequence-to-sequence model. This plotting model while accurate in most cases, still makes errors, therefore, the system allows a feedback mode, wherein the user is presented with a top-k list of plots, among which the user can pick the desired one. From this kind of feedback, we can then, in principle, continuously learn and improve the system. Given that plotting is widely used across data-driven fields, we believe our demonstration will be of interest to both practitioners such as data scientists broadly defined, and researchers interested in natural language interfaces.



References used
https://aclanthology.org/
rate research

Read More

This article explores the potential for Natural Language Processing (NLP) to enable a more effective, prevention focused and less confrontational policing model that has hitherto been too resource consuming to implement at scale. Problem-Oriented Pol icing (POP) is a potential replacement, at least in part, for traditional policing which adopts a reactive approach, relying heavily on the criminal justice system. By contrast, POP seeks to prevent crime by manipulating the underlying conditions that allow crimes to be committed. Identifying these underlying conditions requires a detailed understanding of crime events - tacit knowledge that is often held by police officers but which can be challenging to derive from structured police data. One potential source of insight exists in unstructured free text data commonly collected by police for the purposes of investigation or administration. Yet police agencies do not typically have the skills or resources to analyse these data at scale. In this article we argue that NLP offers the potential to unlock these unstructured data and by doing so allow police to implement more POP initiatives. However we caution that using NLP models without adequate knowledge may either allow or perpetuate bias within the data potentially leading to unfavourable outcomes.
This paper describes the entry of the research group SINAI at SMM4H's ProfNER task on the identification of professions and occupations in social media related with health. Specifically we have participated in Task 7a: Tweet Binary Classification to determine whether a tweet contains mentions of occupations or not, as well as in Task 7b: NER Offset Detection and Classification aimed at predicting occupations mentions and classify them discriminating by professions and working statuses.
Recent studies show that many NLP systems are sensitive and vulnerable to a small perturbation of inputs and do not generalize well across different datasets. This lack of robustness derails the use of NLP systems in real-world applications. This tut orial aims at bringing awareness of practical concerns about NLP robustness. It targets NLP researchers and practitioners who are interested in building reliable NLP systems. In particular, we will review recent studies on analyzing the weakness of NLP systems when facing adversarial inputs and data with a distribution shift. We will provide the audience with a holistic view of 1) how to use adversarial examples to examine the weakness of NLP models and facilitate debugging; 2) how to enhance the robustness of existing NLP models and defense against adversarial inputs; and 3) how the consideration of robustness affects the real-world NLP applications used in our daily lives. We will conclude the tutorial by outlining future research directions in this area.
There are thousands of papers about natural language processing and computational linguistics, but very few textbooks. I describe the motivation and process for writing a college textbook on natural language processing, and offer advice and encouragement for readers who may be interested in writing a textbook of their own.
It is challenging to design profitable and practical trading strategies, as stock price movements are highly stochastic, and the market is heavily influenced by chaotic data across sources like news and social media. Existing NLP approaches largely t reat stock prediction as a classification or regression problem and are not optimized to make profitable investment decisions. Further, they do not model the temporal dynamics of large volumes of diversely influential text to which the market responds quickly. Building on these shortcomings, we propose a deep reinforcement learning approach that makes time-aware decisions to trade stocks while optimizing profit using textual data. Our method outperforms state-of-the-art in terms of risk-adjusted returns in trading simulations on two benchmarks: Tweets (English) and financial news (Chinese) pertaining to two major indexes and four global stock markets. Through extensive experiments and studies, we build the case for our method as a tool for quantitative trading.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا