نماذج لغة محول كبيرة مدربة مسبقا، والتي تكون منتشرة في مهام معالجة اللغة الطبيعية، تكون مكلفة للغاية للتدريب. لتقليل تكلفة التدريب هذه النماذج الكبيرة، طورت العمل السابق طرزا أصغر وأكثر ضغطا تحقق تسريعا كبيرا في وقت التدريب مع الحفاظ على دقة تنافسية للنموذج الأصلي على مهام المصب. على الرغم من أن هذه النماذج الصغيرة المدربة مسبقا تم اعتمادها على نطاق واسع من قبل المجتمع، إلا أنه ليس معروفا مدى جودة معايرة مقارنة بنظيراتهم الأكبر. في هذه الورقة، مع التركيز على مجموعة واسعة من المهام، يمكننا التحقيق بدقة في خصائص المعايرة للمحولات المدربين مسبقا، كدالة لحجمها. نوضح أنه عند تقييم النماذج داخل المجال، تكون النماذج الصغيرة قادرة على تحقيق معايرة تنافسية وغالبا ما تكون أفضل، مقارنة بالنماذج الكبيرة، مع تحقيق تسريع كبير في وقت التدريب. تقنيات المعايرة بعد المخصص تقلل من خطأ المعايرة لجميع النماذج في المجال. ومع ذلك، عند تقييم النماذج الكبيرة التي تم تقييمها، تميل النماذج الكبيرة إلى أن تكون معايرة أفضل، وتعويض التسمية بدلا من ذلك استراتيجية فعالة لمعايرة النماذج في هذا الإعداد.
Large, pre-trained transformer language models, which are pervasive in natural language processing tasks, are notoriously expensive to train. To reduce the cost of training such large models, prior work has developed smaller, more compact models which achieves a significant speedup in training time while maintaining competitive accuracy to the original model on downstream tasks. Though these smaller pre-trained models have been widely adopted by the community, it is not known how well are they calibrated compared to their larger counterparts. In this paper, focusing on a wide range of tasks, we thoroughly investigate the calibration properties of pre-trained transformers, as a function of their size. We demonstrate that when evaluated in-domain, smaller models are able to achieve competitive, and often better, calibration compared to larger models, while achieving significant speedup in training time. Post-hoc calibration techniques further reduce calibration error for all models in-domain. However, when evaluated out-of-domain, larger models tend to be better calibrated, and label-smoothing instead is an effective strategy to calibrate models in this setting.
References used
https://aclanthology.org/
We revisit the topic of translation direction in the data used for training neural machine translation systems and focusing on a real-world scenario with known translation direction and imbalances in translation direction: the Canadian Hansard. Accor
The research aims to estimate the effect of sample size on the statistical test
power (t) for one sample, two interrelated samples, two independent samples,
and on the statistical test power of one-way analysis of variance test (F) to
compare the
Multilingual language models achieve impressive zero-shot accuracies in many languages in complex tasks such as Natural Language Inference (NLI). Examples in NLI (and equivalent complex tasks) often pertain to various types of sub-tasks, requiring di
Pre-trained language models perform well on a variety of linguistic tasks that require symbolic reasoning, raising the question of whether such models implicitly represent abstract symbols and rules. We investigate this question using the case study
Transformer models are expensive to fine-tune, slow for inference, and have large storage requirements. Recent approaches tackle these shortcomings by training smaller models, dynamically reducing the model size, and by training light-weight adapters