Do you want to publish a course? Click here

Analyzing the Effects of Reasoning Types on Cross-Lingual Transfer Performance

تحليل آثار أنواع المنطق على أداء النقل عبر اللغات

500   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Multilingual language models achieve impressive zero-shot accuracies in many languages in complex tasks such as Natural Language Inference (NLI). Examples in NLI (and equivalent complex tasks) often pertain to various types of sub-tasks, requiring different kinds of reasoning. Certain types of reasoning have proven to be more difficult to learn in a monolingual context, and in the crosslingual context, similar observations may shed light on zero-shot transfer efficiency and few-shot sample selection. Hence, to investigate the effects of types of reasoning on transfer performance, we propose a category-annotated multilingual NLI dataset and discuss the challenges to scale monolingual annotations to multiple languages. We statistically observe interesting effects that the confluence of reasoning types and language similarities have on transfer performance.



References used
https://aclanthology.org/
rate research

Read More

Recent multilingual pre-trained language models have achieved remarkable zero-shot performance, where the model is only finetuned on one source language and directly evaluated on target languages. In this work, we propose a self-learning framework th at further utilizes unlabeled data of target languages, combined with uncertainty estimation in the process to select high-quality silver labels. Three different uncertainties are adapted and analyzed specifically for the cross lingual transfer: Language Heteroscedastic/Homoscedastic Uncertainty (LEU/LOU), Evidential Uncertainty (EVI). We evaluate our framework with uncertainties on two cross-lingual tasks including Named Entity Recognition (NER) and Natural Language Inference (NLI) covering 40 languages in total, which outperforms the baselines significantly by 10 F1 for NER on average and 2.5 accuracy for NLI.
Transformers that are pre-trained on multilingual corpora, such as, mBERT and XLM-RoBERTa, have achieved impressive cross-lingual transfer capabilities. In the zero-shot transfer setting, only English training data is used, and the fine-tuned model i s evaluated on another target language. While this works surprisingly well, substantial variance has been observed in target language performance between different fine-tuning runs, and in the zero-shot setup, no target-language development data is available to select among multiple fine-tuned models. Prior work has relied on English dev data to select among models that are fine-tuned with different learning rates, number of steps and other hyperparameters, often resulting in suboptimal choices. In this paper, we show that it is possible to select consistently better models when small amounts of annotated data are available in auxiliary pivot languages. We propose a machine learning approach to model selection that uses the fine-tuned model's own internal representations to predict its cross-lingual capabilities. In extensive experiments we find that this method consistently selects better models than English validation data across twenty five languages (including eight low-resource languages), and often achieves results that are comparable to model selection using target language development data.
We study the problem of Cross-lingual Event Argument Extraction (CEAE). The task aims to predict argument roles of entity mentions for events in text, whose language is different from the language that a predictive model has been trained on. Previous work on CEAE has shown the cross-lingual benefits of universal dependency trees in capturing shared syntactic structures of sentences across languages. In particular, this work exploits the existence of the syntactic connections between the words in the dependency trees as the anchor knowledge to transfer the representation learning across languages for CEAE models (i.e., via graph convolutional neural networks -- GCNs). In this paper, we introduce two novel sources of language-independent information for CEAE models based on the semantic similarity and the universal dependency relations of the word pairs in different languages. We propose to use the two sources of information to produce shared sentence structures to bridge the gap between languages and improve the cross-lingual performance of the CEAE models. Extensive experiments are conducted with Arabic, Chinese, and English to demonstrate the effectiveness of the proposed method for CEAE.
Although recent developments in neural architectures and pre-trained representations have greatly increased state-of-the-art model performance on fully-supervised semantic role labeling (SRL), the task remains challenging for languages where supervis ed SRL training data are not abundant. Cross-lingual learning can improve performance in this setting by transferring knowledge from high-resource languages to low-resource ones. Moreover, we hypothesize that annotations of syntactic dependencies can be leveraged to further facilitate cross-lingual transfer. In this work, we perform an empirical exploration of the helpfulness of syntactic supervision for crosslingual SRL within a simple multitask learning scheme. With comprehensive evaluations across ten languages (in addition to English) and three SRL benchmark datasets, including both dependency- and span-based SRL, we show the effectiveness of syntactic supervision in low-resource scenarios.
We address the task of automatic hate speech detection for low-resource languages. Rather than collecting and annotating new hate speech data, we show how to use cross-lingual transfer learning to leverage already existing data from higher-resource l anguages. Using bilingual word embeddings based classifiers we achieve good performance on the target language by training only on the source dataset. Using our transferred system we bootstrap on unlabeled target language data, improving the performance of standard cross-lingual transfer approaches. We use English as a high resource language and German as the target language for which only a small amount of annotated corpora are available. Our results indicate that cross-lingual transfer learning together with our approach to leverage additional unlabeled data is an effective way of achieving good performance on low-resource target languages without the need for any target-language annotations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا