تحدث نماذج لغة متعددة اللغات بدقة مثيرة للإعجاب بدقة في العديد من اللغات في مهام معقدة مثل الاستدلال اللغوي الطبيعي (NLI).غالبا ما تتعلق أمثلة في المهام المعقدة المكافئة (وما يعادلها) أنواعا مختلفة من المهام الفرعية، والتي تتطلب أنواعا مختلفة من التفكير.لقد أثبتت أنواع معينة من التفكير أكثر صعوبة في التعلم في سياق أحادي الأونلينغ، وفي السياق crosslingual، قد تسليف الملاحظات المماثلة الضوء على كفاءة نقل صفرية ومختيار عينة قليلة.وبالتالي، للتحقيق في آثار أنواع المنطق في أداء النقل، نقترح مجموعة بيانات NLI متعددة اللغات متعددة الفئات ومناقشة التحديات اللازمة لتوسيع نطاق التعليقات التوضيحية أحادية الأونلينغ إلى لغات متعددة.نلاحظ إحصائيا تأثيرات مثيرة للاهتمام أن التقاء أنواع المنطق وأشابه لغة لها على أداء نقل.
Multilingual language models achieve impressive zero-shot accuracies in many languages in complex tasks such as Natural Language Inference (NLI). Examples in NLI (and equivalent complex tasks) often pertain to various types of sub-tasks, requiring different kinds of reasoning. Certain types of reasoning have proven to be more difficult to learn in a monolingual context, and in the crosslingual context, similar observations may shed light on zero-shot transfer efficiency and few-shot sample selection. Hence, to investigate the effects of types of reasoning on transfer performance, we propose a category-annotated multilingual NLI dataset and discuss the challenges to scale monolingual annotations to multiple languages. We statistically observe interesting effects that the confluence of reasoning types and language similarities have on transfer performance.
References used
https://aclanthology.org/
Recent multilingual pre-trained language models have achieved remarkable zero-shot performance, where the model is only finetuned on one source language and directly evaluated on target languages. In this work, we propose a self-learning framework th
Transformers that are pre-trained on multilingual corpora, such as, mBERT and XLM-RoBERTa, have achieved impressive cross-lingual transfer capabilities. In the zero-shot transfer setting, only English training data is used, and the fine-tuned model i
We study the problem of Cross-lingual Event Argument Extraction (CEAE). The task aims to predict argument roles of entity mentions for events in text, whose language is different from the language that a predictive model has been trained on. Previous
Although recent developments in neural architectures and pre-trained representations have greatly increased state-of-the-art model performance on fully-supervised semantic role labeling (SRL), the task remains challenging for languages where supervis
We address the task of automatic hate speech detection for low-resource languages. Rather than collecting and annotating new hate speech data, we show how to use cross-lingual transfer learning to leverage already existing data from higher-resource l