في هذه الدراسة، نوضح جدوى نشر نماذج نمط بيرت إلى AWS Lambda في بيئة الإنتاج.نظرا لأن النماذج المدربة مسبقا متوفرة بحرية كبيرة جدا بحيث لا يتم نشرها في هذه البيئة، فإننا نستخدم تقارير المعرفة وضبط النماذج على مجموعات البيانات الخاصة بمهام عمليتين في العالم الحقيقي: تحليل المعنويات والتوجيهات النصية الدلالية.نتيجة لذلك، نحصل على نماذج تم ضبطها مجال معين ونشرها في بيئة Serverless.يوضح تحليل الأداء اللاحق أن هذا الحل لا يبلغ فقط عن مستويات الكمون مقبول لاستخدام الإنتاج ولكنه أيضا بديل فعال من حيث التكلفة لنماذج صغيرة إلى متوسطة الحجم لنماذج بيرت، كل ذلك دون أي مرفقات تحتية للبنية التحتية.
In this study, we demonstrate the viability of deploying BERT-style models to AWS Lambda in a production environment. Since the freely available pre-trained models are too large to be deployed in this environment, we utilize knowledge distillation and fine-tune the models on proprietary datasets for two real-world tasks: sentiment analysis and semantic textual similarity. As a result, we obtain models that are tuned for a specific domain and deployable in the serverless environment. The subsequent performance analysis shows that this solution does not only report latency levels acceptable for production use but that it is also a cost-effective alternative to small-to-medium size deployments of BERT models, all without any infrastructure overhead.
References used
https://aclanthology.org/
A real-world information extraction (IE) system for semi-structured document images often involves a long pipeline of multiple modules, whose complexity dramatically increases its development and maintenance cost. One can instead consider an end-to-e
Cost standards represent the main part of the building process of any complete
standard cost system. Given this, the cost calibration process attracts special attention in
the domains of planning, control, and decision making. The criticisms direct
Transformer architecture achieves great success in abundant natural language processing tasks. The over-parameterization of the Transformer model has motivated plenty of works to alleviate its overfitting for superior performances. With some explorat
Understanding robustness and sensitivity of BERT models predicting Alzheimer's disease from text is important for both developing better classification models and for understanding their capabilities and limitations. In this paper, we analyze how a c
This research aims to achieve production costs for all agriculture crop eggplant
operations account, and analysis, and the calculation of economic returns, has been
conducting the study based on 2015 prices, compared with 2010 prices, where prices