Do you want to publish a course? Click here

Robustness and Sensitivity of BERT Models Predicting Alzheimer's Disease from Text

متواضع وحساسية نماذج بيرت توقع مرض الزهايمر من النص

210   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Understanding robustness and sensitivity of BERT models predicting Alzheimer's disease from text is important for both developing better classification models and for understanding their capabilities and limitations. In this paper, we analyze how a controlled amount of desired and undesired text alterations impacts performance of BERT. We show that BERT is robust to natural linguistic variations in text. On the other hand, we show that BERT is not sensitive to removing clinically important information from text.

References used
https://aclanthology.org/
rate research

Read More

Alzheimer's Disease (AD) is associated with many characteristic changes, not only in an individual's language but also in the interactive patterns observed in dialogue. The most indicative changes of this latter kind tend to be associated with relati vely rare dialogue acts (DAs), such as those involved in clarification exchanges and responses to particular kinds of questions. However, most existing work in DA tagging focuses on improving average performance, effectively prioritizing more frequent classes; it thus gives a poor performance on these rarer classes and is not suited for application to AD analysis. In this paper, we investigate tagging specifically for rare class DAs, using a hierarchical BiLSTM model with various ways of incorporating information from previous utterances and DA tags in context. We show that this can give good performance for rare DA classes on both the general Switchboard corpus (SwDA) and an AD-specific conversational dataset, the Carolinas Conversation Collection (CCC); and that the tagger outputs then contribute useful information for distinguishing patients with and without AD
Large language models benefit from training with a large amount of unlabeled text, which gives them increasingly fluent and diverse generation capabilities. However, using these models for text generation that takes into account target attributes, su ch as sentiment polarity or specific topics, remains a challenge. We propose a simple and flexible method for controlling text generation by aligning disentangled attribute representations. In contrast to recent efforts on training a discriminator to perturb the token level distribution for an attribute, we use the same data to learn an alignment function to guide the pre-trained, non-controlled language model to generate texts with the target attribute without changing the original language model parameters. We evaluate our method on sentiment- and topic-controlled generation, and show large performance gains over previous methods while retaining fluency and diversity.
Large-scale language models (LMs) pretrained on massive corpora of text, such as GPT-2, are powerful open-domain text generators. However, as our systematic examination reveals, it is still challenging for such models to generate coherent long passag es of text (e.g., 1000 tokens), especially when the models are fine-tuned to the target domain on a small corpus. Previous planning-then-generation methods also fall short of producing such long text in various domains. To overcome the limitations, we propose a simple but effective method of generating text in a progressive manner, inspired by generating images from low to high resolution. Our method first produces domain-specific content keywords and then progressively refines them into complete passages in multiple stages. The simple design allows our approach to take advantage of pretrained LMs at each stage and effectively adapt to any target domain given only a small set of examples. We conduct a comprehensive empirical study with a broad set of evaluation metrics, and show that our approach significantly improves upon the fine-tuned large LMs and various planning-then-generation methods in terms of quality and sample efficiency. Human evaluation also validates that our model generations are more coherent.
Large-scale language models such as GPT-3 are excellent few-shot learners, allowing them to be controlled via natural text prompts. Recent studies report that prompt-based direct classification eliminates the need for fine-tuning but lacks data and i nference scalability. This paper proposes a novel data augmentation technique that leverages large-scale language models to generate realistic text samples from a mixture of real samples. We also propose utilizing soft-labels predicted by the language models, effectively distilling knowledge from the large-scale language models and creating textual perturbations simultaneously. We perform data augmentation experiments on diverse classification tasks and show that our method hugely outperforms existing text augmentation methods. We also conduct experiments on our newly proposed benchmark to show that the augmentation effect is not only attributed to memorization. Further ablation studies and a qualitative analysis provide more insights into our approach.
Current language models are usually trained using a self-supervised scheme, where the main focus is learning representations at the word or sentence level. However, there has been limited progress in generating useful discourse-level representations. In this work, we propose to use ideas from predictive coding theory to augment BERT-style language models with a mechanism that allows them to learn suitable discourse-level representations. As a result, our proposed approach is able to predict future sentences using explicit top-down connections that operate at the intermediate layers of the network. By experimenting with benchmarks designed to evaluate discourse-related knowledge using pre-trained sentence representations, we demonstrate that our approach improves performance in 6 out of 11 tasks by excelling in discourse relationship detection.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا