غالبا ما ينطوي نظام استخراج المعلومات العالمي الحقيقي (IE) لصور وثيقة شبه منظمة أن خط أنابيب طويل من وحدات متعددة، مما يزيد تعقيده بشكل كبير من تكلفة التطوير والصيانة.يمكن للمرء بدلا من ذلك النظر في نموذج نهاية إلى نهاية يدري مباشرة المدخلات إلى الإخراج المستهدف وتبسيط العملية بأكملها.ومع ذلك، يعرف نهج هذا الجيل أن يؤدي إلى أداء غير مستقر إذا لم يتم تصميمه بعناية.هنا نقدم جهدنا الأخير على الانتقال من نظام IE الحالي الذي يعتمد على خط الأنابيب إلى نظام نهاية إلى نهاية يركز على التحديات العملية المرتبطة باستبدال ونشر النظام في الإنتاج الحقيقي والنطاق على نطاق واسع.من خلال صياغة المستند بعناية أي مهمة توليد التسلسل، نوضح أن نظام IE نهاية واحدة إلى النهاية يمكن بناؤه ولا يزال يحقق الأداء المختص.
A real-world information extraction (IE) system for semi-structured document images often involves a long pipeline of multiple modules, whose complexity dramatically increases its development and maintenance cost. One can instead consider an end-to-end model that directly maps the input to the target output and simplify the entire process. However, such generation approach is known to lead to unstable performance if not designed carefully. Here we present our recent effort on transitioning from our existing pipeline-based IE system to an end-to-end system focusing on practical challenges that are associated with replacing and deploying the system in real, large-scale production. By carefully formulating document IE as a sequence generation task, we show that a single end-to-end IE system can be built and still achieve competent performance.
References used
https://aclanthology.org/
In this study, we demonstrate the viability of deploying BERT-style models to AWS Lambda in a production environment. Since the freely available pre-trained models are too large to be deployed in this environment, we utilize knowledge distillation an
Fully understanding narratives often requires identifying events in the context of whole documents and modeling the event relations. However, document-level event extraction is a challenging task as it requires the extraction of event and entity core
Most previous studies on information status (IS) classification and bridging anaphora recognition assume that the gold mention or syntactic tree information is given (Hou et al., 2013; Roesiger et al., 2018; Hou, 2020; Yu and Poesio, 2020). In this p
Extracting relation triplets from raw text is a crucial task in Information Extraction, enabling multiple applications such as populating or validating knowledge bases, factchecking, and other downstream tasks. However, it usually involves multiple-s
Incorporating knowledge bases (KB) into end-to-end task-oriented dialogue systems is challenging, since it requires to properly represent the entity of KB, which is associated with its KB context and dialogue context. The existing works represent the