Do you want to publish a course? Click here

An Edge-Enhanced Hierarchical Graph-to-Tree Network for Math Word Problem Solving

شبكة رسم بياني هرمي محسنة على حافة

251   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Math word problem solving has attracted considerable research interest in recent years. Previous works have shown the effectiveness of utilizing graph neural networks to capture the relationships in the problem. However, these works did not carefully take the edge label information and the long-range word relationship across sentences into consideration. In addition, during generation, they focus on the most relevant areas of the currently generated word, while neglecting the rest of the problem. In this paper, we propose a novel Edge-Enhanced Hierarchical Graph-to-Tree model (EEH-G2T), in which the math word problems are represented as edge-labeled graphs. Specifically, an edge-enhanced hierarchical graph encoder is used to incorporate edge label information. This encoder updates the graph nodes hierarchically in two steps: sentence-level aggregation and problem-level aggregation. Furthermore, a tree-structured decoder with a split attention mechanism is applied to guide the model to pay attention to different parts of the input problem. Experimental results on the MAWPS and Math23K dataset showed that our EEH-G2T can effectively improve performance compared with state-of-the-art methods.



References used
https://aclanthology.org/
rate research

Read More

Interactions between entities in knowledge graph (KG) provide rich knowledge for language representation learning. However, existing knowledge-enhanced pretrained language models (PLMs) only focus on entity information and ignore the fine-grained rel ationships between entities. In this work, we propose to incorporate KG (including both entities and relations) into the language learning process to obtain KG-enhanced pretrained Language Model, namely KLMo. Specifically, a novel knowledge aggregator is designed to explicitly model the interaction between entity spans in text and all entities and relations in a contextual KG. An relation prediction objective is utilized to incorporate relation information by distant supervision. An entity linking objective is further utilized to link entity spans in text to entities in KG. In this way, the structured knowledge can be effectively integrated into language representations. Experimental results demonstrate that KLMo achieves great improvements on several knowledge-driven tasks, such as entity typing and relation classification, comparing with the state-of-the-art knowledge-enhanced PLMs.
Precise information of word boundary can alleviate the problem of lexical ambiguity to improve the performance of natural language processing (NLP) tasks. Thus, Chinese word segmentation (CWS) is a fundamental task in NLP. Due to the development of p re-trained language models (PLM), pre-trained knowledge can help neural methods solve the main problems of the CWS in significant measure. Existing methods have already achieved high performance on several benchmarks (e.g., Bakeoff-2005). However, recent outstanding studies are limited by the small-scale annotated corpus. To further improve the performance of CWS methods based on fine-tuning the PLMs, we propose a novel neural framework, LBGCN, which incorporates a lexicon-based graph convolutional network into the Transformer encoder. Experimental results on five benchmarks and four cross-domain datasets show the lexicon-based graph convolutional network successfully captures the information of candidate words and helps to improve performance on the benchmarks (Bakeoff-2005 and CTB6) and the cross-domain datasets (SIGHAN-2010). Further experiments and analyses demonstrate that our proposed framework effectively models the lexicon to enhance the ability of basic neural frameworks and strengthens the robustness in the cross-domain scenario.
Given the diversity of the candidates and complexity of job requirements, and since interviewing is an inherently subjective process, it is an important task to ensure consistent, uniform, efficient and objective interviews that result in high qualit y recruitment. We propose an interview assistant system to automatically, and in an objective manner, select an optimal set of technical questions (from question banks) personalized for a candidate. This set can help a human interviewer to plan for an upcoming interview of that candidate. We formalize the problem of selecting a set of questions as an integer linear programming problem and use standard solvers to get a solution. We use knowledge graph as background knowledge in this formulation, and derive our objective functions and constraints from it. We use candidate's resume to personalize the selection of questions. We propose an intrinsic evaluation to compare a set of suggested questions with actually asked questions. We also use expert interviewers to comparatively evaluate our approach with a set of reasonable baselines.
Relational triple extraction is a crucial task for knowledge graph construction. Existing methods mainly focused on explicit relational triples that are directly expressed, but usually suffer from ignoring implicit triples that lack explicit expressi ons. This will lead to serious incompleteness of the constructed knowledge graphs. Fortunately, other triples in the sentence provide supplementary information for discovering entity pairs that may have implicit relations. Also, the relation types between the implicitly connected entity pairs can be identified with relational reasoning patterns in the real world. In this paper, we propose a unified framework to jointly extract explicit and implicit relational triples. To explore entity pairs that may be implicitly connected by relations, we propose a binary pointer network to extract overlapping relational triples relevant to each word sequentially and retain the information of previously extracted triples in an external memory. To infer the relation types of implicit relational triples, we propose to introduce real-world relational reasoning patterns in our model and capture these patterns with a relation network. We conduct experiments on several benchmark datasets, and the results prove the validity of our method.
Many state-of-art neural models designed for monotonicity reasoning perform poorly on downward inference. To address this shortcoming, we developed an attentive tree-structured neural network. It consists of a tree-based long-short-term-memory networ k (Tree-LSTM) with soft attention. It is designed to model the syntactic parse tree information from the sentence pair of a reasoning task. A self-attentive aggregator is used for aligning the representations of the premise and the hypothesis. We present our model and evaluate it using the Monotonicity Entailment Dataset (MED). We show and attempt to explain that our model outperforms existing models on MED.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا