Do you want to publish a course? Click here

Unsupervised Keyphrase Extraction by Jointly Modeling Local and Global Context

استخراج المفاتيح غير المنسق من خلال النمذجة بشكل مشترك السياق المحلي والعالمي

410   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Embedding based methods are widely used for unsupervised keyphrase extraction (UKE) tasks. Generally, these methods simply calculate similarities between phrase embeddings and document embedding, which is insufficient to capture different context for a more effective UKE model. In this paper, we propose a novel method for UKE, where local and global contexts are jointly modeled. From a global view, we calculate the similarity between a certain phrase and the whole document in the vector space as transitional embedding based models do. In terms of the local view, we first build a graph structure based on the document where phrases are regarded as vertices and the edges are similarities between vertices. Then, we proposed a new centrality computation method to capture local salient information based on the graph structure. Finally, we further combine the modeling of global and local context for ranking. We evaluate our models on three public benchmarks (Inspec, DUC 2001, SemEval 2010) and compare with existing state-of-the-art models. The results show that our model outperforms most models while generalizing better on input documents with different domains and length. Additional ablation study shows that both the local and global information is crucial for unsupervised keyphrase extraction tasks.



References used
https://aclanthology.org/
rate research

Read More

Keyword or keyphrase extraction is to identify words or phrases presenting the main topics of a document. This paper proposes the AttentionRank, a hybrid attention model, to identify keyphrases from a document in an unsupervised manner. AttentionRank calculates self-attention and cross-attention using a pre-trained language model. The self-attention is designed to determine the importance of a candidate within the context of a sentence. The cross-attention is calculated to identify the semantic relevance between a candidate and sentences within a document. We evaluate the AttentionRank on three publicly available datasets against seven baselines. The results show that the AttentionRank is an effective and robust unsupervised keyphrase extraction model on both long and short documents. Source code is available on Github.
Extracting keyphrases that summarize the main points of a document is a fundamental task in natural language processing. Supervised approaches to keyphrase extraction(KPE) are largely developed based on the assumption that the training data is fully annotated. However, due to the difficulty of keyphrase annotating, KPE models severely suffer from incomplete annotated problem in many scenarios. To this end, we propose a more robust training method that learns to mitigate the misguidance brought by unlabeled keyphrases. We introduce negative sampling to adjust training loss, and conduct experiments under different scenarios. Empirical studies on synthetic datasets and open domain dataset show that our model is robust to incomplete annotated problem and surpasses prior baselines. Extensive experiments on five scientific domain datasets of different scales demonstrate that our model is competitive with the state-of-the-art method.
Automatically extracting keyphrases from scholarly documents leads to a valuable concise representation that humans can understand and machines can process for tasks, such as information retrieval, article clustering and article classification. This paper is concerned with the parts of a scientific article that should be given as input to keyphrase extraction methods. Recent deep learning methods take titles and abstracts as input due to the increased computational complexity in processing long sequences, whereas traditional approaches can also work with full-texts. Titles and abstracts are dense in keyphrases, but often miss important aspects of the articles, while full-texts on the other hand are richer in keyphrases but much noisier. To address this trade-off, we propose the use of extractive summarization models on the full-texts of scholarly documents. Our empirical study on 3 article collections using 3 keyphrase extraction methods shows promising results.
The task of Event Detection (ED) in Information Extraction aims to recognize and classify trigger words of events in text. The recent progress has featured advanced transformer-based language models (e.g., BERT) as a critical component in state-of-th e-art models for ED. However, the length limit for input texts is a barrier for such ED models as they cannot encode long-range document-level context that has been shown to be beneficial for ED. To address this issue, we propose a novel method to model document-level context for ED that dynamically selects relevant sentences in the document for the event prediction of the target sentence. The target sentence will be then augmented with the selected sentences and consumed entirely by transformer-based language models for improved representation learning for ED. To this end, the REINFORCE algorithm is employed to train the relevant sentence selection for ED. Several information types are then introduced to form the reward function for the training process, including ED performance, sentence similarity, and discourse relations. Our extensive experiments on multiple benchmark datasets reveal the effectiveness of the proposed model, leading to new state-of-the-art performance.
Implicit discourse relation recognition (IDRR) aims to identify logical relations between two adjacent sentences in the discourse. Existing models fail to fully utilize the contextual information which plays an important role in interpreting each loc al sentence. In this paper, we thus propose a novel graph-based Context Tracking Network (CT-Net) to model the discourse context for IDRR. The CT-Net firstly converts the discourse into the paragraph association graph (PAG), where each sentence tracks their closely related context from the intricate discourse through different types of edges. Then, the CT-Net extracts contextual representation from the PAG through a specially designed cross-grained updating mechanism, which can effectively integrate both sentence-level and token-level contextual semantics. Experiments on PDTB 2.0 show that the CT-Net gains better performance than models that roughly model the context.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا