نموذج سائد في جيل النص العصبي هو جيل واحد لقطة واحدة، حيث يتم إنتاج النص في خطوة واحدة.ومع ذلك، فإن إعداد طلقة من طلقة غير كافية عندما تكون القيود التي يرغب المستخدم في فرضها على النص الذي تم إنشاؤه ديناميكية، خاصة عند تأليف مستندات أطول.نحن نتطلع إلى هذا القيد مع إعداد جيل نص تفاعلي يتفاعل فيه المستخدم مع النظام عن طريق إصدار الأوامر لتعديل النص الموجود.تحقيقا لهذه الغاية، نقترح مهمة تحرير نصية جديدة، وإدخال Wikidocedits، ومجموعة بيانات تحرير جملة واحدة من Wikipedia.نظرا لأن محررنا التفاعلي، وهو نموذج يستند إلى المحولات التي تم تدريبها على مجموعة البيانات هذه، تتفوق على خطوط الأساس والحصول على نتائج إيجابية في كل من التقييمات التلقائية والإنسانية.نقدم تحليلات تجريبية ونوعية لأداء هذا النموذج.
A prevailing paradigm in neural text generation is one-shot generation, where text is produced in a single step. The one-shot setting is inadequate, however, when the constraints the user wishes to impose on the generated text are dynamic, especially when authoring longer documents. We address this limitation with an interactive text generation setting in which the user interacts with the system by issuing commands to edit existing text. To this end, we propose a novel text editing task, and introduce WikiDocEdits, a dataset of single-sentence edits crawled from Wikipedia. We show that our Interactive Editor, a transformer-based model trained on this dataset, outperforms baselines and obtains positive results in both automatic and human evaluations. We present empirical and qualitative analyses of this model's performance.
References used
https://aclanthology.org/
Extractive summarization has been the mainstay of automatic summarization for decades. Despite all the progress, extractive summarizers still suffer from shortcomings including coreference issues arising from extracting sentences away from their orig
Despite the increasingly good quality of Machine Translation (MT) systems, MT outputs require corrections. Automatic Post-Editing (APE) models have been introduced to perform these corrections without human intervention. However, no system has been a
Language technologies, such as machine translation (MT), but also the application of artificial intelligence in general and an abundance of CAT tools and platforms have an increasing influence on the translation market. Human interaction with these t
Automatic summarisation has the potential to aid physicians in streamlining clerical tasks such as note taking. But it is notoriously difficult to evaluate these systems and demonstrate that they are safe to be used in a clinical setting. To circumve
Accurate translation requires document-level information, which is ignored by sentence-level machine translation. Recent work has demonstrated that document-level consistency can be improved with automatic post-editing (APE) using only target-languag