Do you want to publish a course? Click here

Reconstruction Attack on Instance Encoding for Language Understanding

هجوم إعادة الإعمار على سبيل المثال ترميز لفهم اللغة

339   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

A private learning scheme TextHide was recently proposed to protect the private text data during the training phase via so-called instance encoding. We propose a novel reconstruction attack to break TextHide by recovering the private training data, and thus unveil the privacy risks of instance encoding. We have experimentally validated the effectiveness of the reconstruction attack with two commonly-used datasets for sentence classification. Our attack would advance the development of privacy preserving machine learning in the context of natural language processing.



References used
https://aclanthology.org/
rate research

Read More

In order to alleviate the huge demand for annotated datasets for different tasks, many recent natural language processing datasets have adopted automated pipelines for fast-tracking usable data. However, model training with such datasets poses a chal lenge because popular optimization objectives are not robust to label noise induced in the annotation generation process. Several noise-robust losses have been proposed and evaluated on tasks in computer vision, but they generally use a single dataset-wise hyperparamter to control the strength of noise resistance. This work proposes novel instance-adaptive training frameworks to change single dataset-wise hyperparameters of noise resistance in such losses to be instance-wise. Such instance-wise noise resistance hyperparameters are predicted by special instance-level label quality predictors, which are trained along with the main classification models. Experiments on noisy and corrupted NLP datasets show that proposed instance-adaptive training frameworks help increase the noise-robustness provided by such losses, promoting the use of the frameworks and associated losses in NLP models trained with noisy data.
Abstract We present a new conjunctivist framework, neural event semantics (NES), for compositional grounded language understanding. Our approach treats all words as classifiers that compose to form a sentence meaning by multiplying output scores. The se classifiers apply to spatial regions (events) and NES derives its semantic structure from language by routing events to different classifier argument inputs via soft attention. NES is trainable end-to-end by gradient descent with minimal supervision. We evaluate our method on compositional grounded language tasks in controlled synthetic and real-world settings. NES offers stronger generalization capability than standard function-based compositional frameworks, while improving accuracy over state-of-the-art neural methods on real-world language tasks.
We present a simple yet effective Targeted Adversarial Training (TAT) algorithm to improve adversarial training for natural language understanding. The key idea is to introspect current mistakes and prioritize adversarial training steps to where the model errs the most. Experiments show that TAT can significantly improve accuracy over standard adversarial training on GLUE and attain new state-of-the-art zero-shot results on XNLI. Our code will be released upon acceptance of the paper.
Advances in English language representation enabled a more sample-efficient pre-training task by Efficiently Learning an Encoder that Classifies Token Replacements Accurately (ELECTRA). Which, instead of training a model to recover masked tokens, it trains a discriminator model to distinguish true input tokens from corrupted tokens that were replaced by a generator network. On the other hand, current Arabic language representation approaches rely only on pretraining via masked language modeling. In this paper, we develop an Arabic language representation model, which we name AraELECTRA. Our model is pretrained using the replaced token detection objective on large Arabic text corpora. We evaluate our model on multiple Arabic NLP tasks, including reading comprehension, sentiment analysis, and named-entity recognition and we show that AraELECTRA outperforms current state-of-the-art Arabic language representation models, given the same pretraining data and with even a smaller model size.
Knowledge Distillation (KD) is extensively used to compress and deploy large pre-trained language models on edge devices for real-world applications. However, one neglected area of research is the impact of noisy (corrupted) labels on KD. We present, to the best of our knowledge, the first study on KD with noisy labels in Natural Language Understanding (NLU). We document the scope of the problem and present two methods to mitigate the impact of label noise. Experiments on the GLUE benchmark show that our methods are effective even under high noise levels. Nevertheless, our results indicate that more research is necessary to cope with label noise under the KD.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا